Most Download

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • Earth Science Frontiers. 2025, 32(03): 92-104. https://doi.org/10.13745/j.esf.sf.2025.3.1
    随着全球变化加剧,地-气界面作为地球系统中关键的物质与能量交换界面,成为理解气候变化、生态演变以及地球系统反馈机制的重要窗口。地-气界面过程涉及大气与陆地、海洋之间的能量与物质交换,是陆地和海洋生态系统动态变化的核心,直接影响地球系统的演变。地-气界面科学研究对于深入理解地球系统的动力学过程至关重要,是地球系统科学中的重要前沿问题之一。本文首先概述了地球系统科学视角下的地-气界面科学研究,总结了地球系统结构中的地-气界面及其作用,以及地-气界面物质与能量交换过程与全球变化的关系。其次,综述了地-气界面过程对大气环境的影响,地-气界面过程对生态系统的碳、氮等元素循环、水循环及其功能服务的影响,以及陆-海-气系统作用与全球气候变化。最后,提出了地-气界面科学研究的前沿与挑战,包括建设地-气界面科学的多尺度跨学科研究体系,如天-地-空立体观测系统优化、地-气界面过程的模式研究与多尺度耦合机制、人工智能时代的地-气界面科学研究等,极地、高山和滨海等生态和气候敏感区的地-气界面过程及影响等。地-气界面科学研究将在气候变化应对、生态环境保护和可持续发展等领域发挥更加重要的作用。
  • Earth Science Frontiers. 2025, 32(03): 118-136. https://doi.org/10.13745/j.esf.sf.2025.3.9
    地球系统模式是理解和预测全球变化的核心工具,近年来取得了显著进展。其性能提升体现在圈层耦合过程的精细化发展,以及圈层内复杂物理和化学过程的逐步引入。不确定性的降低则得益于新方法和新技术的发展和应用。然而,地球系统模式仍面临诸多挑战,包括对复杂交互过程的表征能力不足、社会-生态系统过程模拟的局限性,以及区域极端事件模拟能力的提升需求。未来的发展需深化跨学科协作,借助新技术强化数据获取与模型预测能力,同时聚焦社会-生态系统过程及其影响机制的研究,以增强对区域极端事件的模拟与预测能力,构建完善的陆-海-气-人相互耦合的新一代地球系统模式,为人类社会的可持续发展及全球变化的应对和预测提供更科学的支撑。
  • Earth Science Frontiers. 2025, 32(03): 52-61. https://doi.org/10.13745/j.esf.sf.2025.3.13
    在全球变化背景下,生态水文研究的时空尺度得到了极大的拓展,研究内容从水与生物之间的互馈关系及其变化,延伸至水与其他非生物要素(如大气、土壤、岩石)以及人类活动之间的互馈关系及其演变机制。本文基于地球系统科学理念,结合全球变化下生态水文面临的挑战以及研究范式转变,从“土壤-植被-大气”连续体(SPAC)、地球关键带以及流域等多维度探讨生态水文学过程,阐释水分、能量和物质在基岩、土壤、植被和大气界面之间的传输与交换机制以及植被生长对土壤结构和水分动态的反馈作用,论述气候变化和人类活动影响下基岩风化、土壤形成与生态水文过程的协同演变及其对水文循环和物质平衡的影响,并讨论了流域作为连接全球与局地尺度的关键中间单元的重要性。面向水-生态资源可持续利用需求,提出了在人工智能背景下生态水文研究的可能突破途径,包括多源数据融合、物理过程与机器学习结合的建模方法,以及跨学科协作的研究范式。本文旨在构建生态-水文-社会协同发展理论框架,为提升生态系统质量、保障水资源可持续利用、促进社会经济绿色发展提供科学依据和决策支持。
  • Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 11)
    Demin LIU, Changsheng ZHANG, Wanling LU, Meihua WEI, Yanya QI, Fei LIU, Yue ZHAO, Huai JIANG
    Earth Science Frontiers. 2025, 32(1): 367-379. https://doi.org/10.13745/j.esf.sf.2024.1.10
    Abstract (496) PDF (14) HTML (470)   Knowledge map   Save

    Geothermal resources in the middle and deep layers of the Fenwei Graben exhibit considerable development, yet their genetic mechanism remains elusive. A thorough understanding of the geological background and the cause of thermal convergence is essential for improving exploration and exploitation efficiency. Building on previous research, this paper provides a comprehensive analysis of the deep thermal structural characteristics, structural evolution, genetic mechanisms, and the source, migration pathways, reservoirs, and sealing conditions of the Fenwei Graben. Additionally, it explores the mechanisms of driving thermal convergence in the region. The formation of middle and deep geothermal resources in the Fenwei Graben is rooted in a complex geological framework, with Cenozoic tectonic processes playing a pivotal role in the development of medium- and high-temperature reservoirs. The Cenozoic extension of the Fenwei Graben is primarily driven by the distant effects of the Indian-Eurasian plate collision. Key factors contributing to the formation of geothermal resources in the region include asthenospheric diapir upwelling, the development of low-velocity, high-conductivity zones in the middle and shallow layers, crustal stretching and thinning, and solid-shear ductile deformation. Mantle heat conduction serves as the primary dynamic heat source for the target geothermal reservoir, with shallowly embedded low-velocity, high-conductivity layers within the upper mantle and crust acting as efficient heat conductors and energy accumulation centers. These layers function as direct heat sources and focal points for medium- and deep-thermal reservoirs. The significant extension and tension during the Cenozoic era, combined with distinct structural patterns, provide favorable thermal control structures. Marginal faults and basin-controlling faults, characterized by deep incisions and active Cenozoic tectonics, exhibit excellent heat conduction properties, playing a crucial role in the formation and distribution of geothermal resources. These faults act as efficient pathways for heat conduction and release. The thick Cenozoic loose sediments with extensively developed pores, along with volcanic rocks characterized by low thermal conductivity and excellent heat retention, serve as high-quality thermal capping layers. The metamorphic basement, marked by ductile shear deformation, functions both as the target layer for dry hot rock geothermal resources (solid heat energy) and as an effective heat source layer for shallow hydrothermal geothermal systems. As a result, the Fenwei Graben boasts an exceptional thermal accumulation system, integrating heat sources, pathways, reservoirs, and capping layers, which collectively support the enrichment of high-quality geothermal resources.

  • Earth Science Frontiers. 2025, 32(01): 432-439. https://doi.org/10.13745/j.esf.sf.2024.6.34
    Abstract (12) PDF (14) HTML (9)   Knowledge map   Save
    降雨能否穿透厚包气带到达潜水面是地下水补给领域争议较大的问题。华北平原“23·7”极端降雨事件相当于华北平原的一次大型入渗试验,为分析潜水埋深如何控制地下水补给提供了契机。本研究以雄安新区白洋淀周边潜水浅埋区4口自动监测井和容城县境内潜水深埋区6口自动监测井为例,分析不同埋深地下水对2023年3日内累积降雨量为289.2 mm的极端降雨事件的响应规律。在潜水浅埋区,暴雨开始后约16 h垂向入渗至潜水面,潜水抬升幅度达1.36~1.79 m;在潜水深埋区,暴雨后河水水位迅速抬升并引发渗漏形成水丘,在潜水回水作用下离南拒马河距离小于6 km的潜水位以较快速度抬升1.38~3.67 m。本研究表明,降雨沿着包气带的垂向入渗是潜水浅埋区地下水的补给来源,暴雨后河水入渗引发的潜水回水是河道附近潜水深埋区地下水补给的主要来源。本文加深了对不同埋深潜水补给机理的认识,对今后分析华北平原乃至其他地下水超采区的水位回升控制机理、生态补水效果具有重要指导意义。
  • Earth Science Frontiers. 2025, 32(03): 288-310. https://doi.org/10.13745/j.esf.sf.2025.3.26
    天然源痕量活性有机气体,也叫生物源挥发性有机化合物(BVOCs),是地球系统中重要的痕量活性有机气体,对全球碳循环、大气化学和气候调控具有重要作用。BVOCs在大气中通过与氧化剂(如羟基自由基OH、臭氧O3和NO3自由基)快速反应,驱动二次有机气溶胶(SOA)的生成,调节大气辐射强迫,影响区域和全球气候。同时,BVOCs通过对流层与平流层臭氧的交互作用影响大气中羟基自由基(OH)的浓度,间接参与温室气体的生命周期调控。全球BVOCs排放量估计为每年1 000 Tg碳以上,主要来自森林生态系统,其中异戊二烯和单萜占主导地位。近年来,BVOCs排放的观测技术取得了显著进展,从传统的离线采样与气相色谱-质谱(GC-MS)分析到高时间分辨率的在线技术(如质子转移反应质谱PTR-MS和飞行时间质谱PTR-ToF-MS),极大提高了BVOCs排放数据的时间分辨率与化学精度。此外,基于无人机、卫星遥感与地基通量塔的多尺度监测技术,也为区域BVOCs排放的时空动态研究提供了新工具。结合动态箱法、涡度相关法和建模模拟,研究人员逐步构建了更精确的BVOCs排放清单,为理解其与气候变化的复杂反馈机制奠定了基础。环境因子对BVOCs排放的影响研究日益深入。光照和温度是控制BVOCs排放的关键因子,光照强度变化直接影响光合作用及异戊二烯的排放,而温度升高则加速BVOCs的生物合成和挥发。二氧化碳(CO2)浓度的升高可能通过光合作用调节BVOCs的排放强度,同时降低气孔导度减少BVOCs的释放速率,但其长期效应可能因植物种类和适应机制的差异而有所变化。臭氧(O3)浓度升高对BVOCs的作用具有双重效应:一方面通过胁迫反应诱导BVOCs的防御性释放,另一方面可能损伤叶片并抑制排放。气溶胶浓度和BVOCs之间存在重要的正反馈机制,高BVOCs排放可促进SOA生成,而SOA形成反过来通过散射光效应影响光合作用与BVOCs排放。氮循环改变对BVOCs排放的影响较为复杂,高氮输入可能通过改变植物养分分配与代谢路径,增加某些BVOCs的排放或抑制其他种类BVOCs的合成。未来全球变化情景下,气候变暖、极端天气频发和CO2浓度持续升高可能显著改变BVOCs的排放模式及其与大气化学和气候系统的耦合机制。综合利用观测和建模技术,加强对多因子交互作用及长时间尺度下BVOCs排放的定量研究,将为揭示BVOCs的多圈层耦合作用机制提供重要支撑,并为气候变化和大气化学研究提供新的科学视角。
  • Earth Science Frontiers. 2025, 32(03): 392-407. https://doi.org/10.13745/j.esf.sf.2025.3.40
    高能宇宙射线及其次级粒子与大气和地表物质中的原子发生反应,分别生成大气和原位宇宙成因核素。大气成因10Be主要由散裂中子与大气中的氧和氮原子发生核反应生成,被气溶胶吸附后在大气层中迁移并通过干湿沉降过程沉积到地表。相比于14C,10Be具有更长的半衰期(1.387 Ma),定年尺度可达数个百万年。相比于原位成因10Be,大气成因10Be不仅可以作为年代学和地表风化剥蚀指标,同时也可以重建古地磁场强度和古气候降水变化。大气成因10Be具有应用范围广、自然界核素浓度高和实验室前处理简单等优势,有利于核素的实验室提取和加速器质谱分析。尽管大气成因10Be已经在各个领域中广泛应用,但对古地磁场强度、古气候降水、风化剥蚀通量、年代学等指标的适用性研究仍缺乏系统梳理和深入讨论。本文综述了大气成因10Be指标的基本原理和不同研究实例(如海洋沉积物、黄土沉积物、冰芯、河流沉积物等),探讨了大气成因10Be指标在表层地球系统科学研究中的适用性,并初步展望了大气成因10Be研究的机遇和挑战。
  • Earth Science Frontiers. 2025, 32(03): 7-22. https://doi.org/10.13745/j.esf.sf.2025.3.11
    地球深部过程对表层地球系统的影响构成了地球系统科学研究的核心议题。通过构造运动和火山喷发等多种机制,深部过程改变了物质循环和能量传输的深浅部模式,进而对表层地球系统产生深远影响。这种影响具体表现在以下几个方面:(1)构造活动通过地形的重塑,调控了流域尺度的侵蚀-沉积过程;(2)火山活动和构造运动通过改变大气成分和环流格局,在地质时间尺度上驱动了气候变化,其中硅酸盐风化作用在调节大气中CO2浓度方面扮演了关键角色;(3)深部过程可能引发生态系统演化中的生物灭绝事件,同时也能促进生物多样性的形成;(4)在全球气候变化的背景下,地震和地质灾害通过影响社会-生态系统的稳定性,可能进一步加剧其不稳定性。随着观测技术的持续进步,地球系统科学研究将继续深入理解表层地球系统对深部过程的响应机制、量化其影响强度、预测自然灾害的演化趋势,以及增强社会-生态系统对灾害的适应能力。本文系统梳理了深部过程-表层系统-社会生态的跨尺度耦合机制,有助于理解地球系统整体演化。
  • Earth Science Frontiers. 2025, 32(02): 195-205. https://doi.org/10.13745/j.esf.sf.2025.2.8
    在当前能源需求和“双碳”的大背景下,利用添加促进剂的水合物法储存CO2受到广泛关注,而促进剂的使用对CO2水合物的各项性能影响不同。因此本文以硅胶为多孔介质,以3.0 MPa、274.15 K为初始生成条件,对比分析了分解温度为275.15 K条件下,分解压力分别为0、0.5、1 MPa时纯水体系和不同浓度(0.8、0.9、1.0、1.1、1.2 g/L)的L-蛋氨酸(L-Met)体系对CO2水合物稳定性的影响。结果表明:在0 MPa分解压力下1.1 g/L L-Met体系中的CO2水合物稳定性最好,分解压力为0.5 MPa和1 MPa时,0.9 g/L L-Met体系中水合物均表现出最好的稳定性,有利于水合物的稳定储存。除了研究L-Met浓度对稳定性的影响外,还分析了分解压力对水合物分解的影响。研究发现在纯水体系中,分解压力为0 MPa时水合物分解速率表现为先增大后减小,而其余分解压力条件下均在初始时刻具有最大分解速率,呈现单调递减趋势;同时发现除0.8 g/L L-Met体系外,其他体系在常压下分解初期时水合物分解速率均是先增大后减小,具有水合物的“自保护”效应,而在0.5 MPa和1 MPa压力下,只在初始时刻具有最大的分解速率,呈现单调减小的趋势,对上述效应具有破坏作用。通过上述研究,为CO2水合物的长距离运输和长时间储存提供数据及理论支撑。
  • Lei PAN, Hongquan DU, Leitao LI, Tao LONG, Xuefeng YIN
    Earth Science Frontiers. 2024, 31(5): 156-165. https://doi.org/10.13745/j.esf.sf.2024.6.12
    Abstract (14) PDF (5) HTML (7)   Knowledge map   Save

    The Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin is a typical tight reservoir with poor physical properties, whilst the development of natural fractures improves the reservoir properties. Natural fractures provide the main reservoir spaces and seepage channels thus have an important impact on the natural gas migration, accumulation and high yield. Based on outcrop, core, thin section and image log data, this paper investigates the genetic origin of natural fractures and analyzes the characteristics and main controlling factors of natural fracture development in the study area. Natural fractures are mainly low- and high-angle shear fractures of tectonic origin and oriented NW-SE (300°±10°) and NEE-SWW (70°±5°), with low fracture filling. Fracture development is mainly influenced by structural location, lithology and rock thickness. The favorable sites condusive to high natural gas production have the nose-like structure, within 400 m from the upthrown side of the fault, with vertical fault length between 60-120 m, in the vicinity of the inflection point of the NW fault extension line. Fractures are most developed in medium-fine quartz sandstone and fine-grained feldspar lithic sandstone, with the high-energy, large-scale sand body (high content of quartz and low content of shale) more conducive to fracture development. There is a significant negative correlation between the degree of fracture development and the thickness of the rock layer, where high fracture density and high fracture development are achieved when the rock layer is less than 1 m thick.

  • Earth Science Frontiers. 2025, 32(03): 274-287. https://doi.org/10.13745/j.esf.sf.2025.3.23
    始新世—渐新世的气候转型(Eocene-Oligocene Transition, EOT)是新生代时期最为显著的全球降温事件之一,标志着地球气候系统从“温室”向“冷室”模式的关键转变。虽然深海沉积物较为一致地记录了这一降温事件,但众多陆相沉积记录却显示不同区域的气候响应呈现出显著的空间差异,凸显了全球气候背景与区域环境相互作用的重要性。青藏高原隆升显著影响全球大陆风化的格局,与新生代全球气候变化有密切关系,因而高原周缘的大陆风化演变是反映全球与区域气候变化的良好指示。本文汇总了晚始新世—渐新世青藏高原周缘大陆风化的演变记录,结合我们在青藏高原东南缘吕合盆地35~26 Ma期间的风化历史,探索这一时期青藏高原周缘风化演变的共同性和差异性。结果显示:青藏高原北部大部分区域自晚始新世起的风化强度便开始下降并延续至渐新世,与降温和干旱化过程相耦合;而东南缘则表现为多阶段的温度波动及持续湿润的气候特征。这种区域性差异主要由全球降温、构造隆升和季风系统演化的共同调控驱动。本研究为理解青藏高原不同区域在EOT期间的风化模式及其驱动机制提供了重要线索。
  • Earth Science Frontiers. 2025, 32(03): 445-461. https://doi.org/10.13745/j.esf.sf.2025.3.28
    城市化和城市发展是对生态环境影响最显著的人类活动,伴随人口增长和消费水平提升,城市化引发了一系列复杂的水资源与水环境问题。尤其在发展中国家,城市排水系统不足加剧了水环境恶化,严重威胁城市健康与可持续发展目标。为此,从地球系统科学视角探讨城市三维下垫面结构、水文过程与水资源管理之间的复杂关系成为关键科学问题。本研究基于“地球关键带科学”和“社会-生态系统科学理论”,系统梳理了城市下垫面结构与水循环动态变化、水环境质量及水资源可持续利用的耦合机制。通过整合物理、化学与生物过程,研究揭示了不透水面扩张对降水-径流-渗透动态平衡、污染物迁移及水资源供需分配的影响机制,强调社会与自然系统耦合研究对水资源优化管理的重要性。此外,研究结合水文过程与生态系统服务的关联,深入分析了水文动态对生态系统服务功能及人类福祉的调控作用,初步提出了基于社会-生态系统理论的城市水资源可持续管理框架。该框架为理解城市水文系统结构-过程-功能的耦合机制提供了科学支撑。本综述研究不仅有助于理解复杂的城市水文动态与生态服务关系,打通水文分支学科间壁垒,还为城市水资源管理和政策制定提供了理论依据和实践指导。
  • Xueqiu WANG
    Earth Science Frontiers. 2025, 32(1): 1-10. https://doi.org/10.13745/j.esf.sf.2024.10.33
    Abstract (16) PDF (3) HTML (11)   Knowledge map   Save

    The Big Science Program on CHEMICAL EARTH was first proposed by Wang et al. in 2008. An initiative was lunched in 2016 by the UNESCO International Centre on Global-scale Geochemistry and accepted by the UNESCO in 2023. The goal was to establish a digital CHEMICAL EARTH presenting all naturally occuring chemical elements on Earth to provide data services for sustainable global development; the scientific and technical aims were to understand the spatiotemporal distribution and cyclying of key elements on Earth, and to develop high-quality laboratory chemical analysis and big data mining technology. This article summaries the major achievements to date. (1) A Global Geochemical Baselines Network is established covering 33% of the world’s land area. It provides spatial distribution patterns and geochemical baselines of 76 chemical elements, allowing delineation of REE, Li, Cu and Au super-enrichment targets and, whereby, the discovery of giant HREE deposits in Yunnan. (2) A global distribution map of eight toxic heavy metals in soil is completed. It finds that Europe has the highest pollution risks compared to China and the United States, with 48% of its land area exceeding the pollution risk limits for the studied heavy metals. This results from Europe’s long history of industrial development without early pollution control technology, allowing large-scale toxins release into the environment. (3) China Geochemical Observation Network is established based on three rounds of resampling campaigns throughout China. It finds significant increase of Cd, Hg, As, and Ca in the past 30 years, and that cycling of Hg occurs in the form of nano cinnabar (HgS) grains, not mercury vapor as traditionally recognized. (4) The program promotes public access to geochemical big data by providing QR codes, which allow anyone to query big data through websites and mobile phones. Geochemical big data show that farmlands in China’s major grain-produing regions overall are of good quality in terms of food safety.

  • Qiang WANG, Zhizhong CHENG, Tingjie YAN, Chenggui LIN, Zezhong DU, Huixiang YUAN, Xiaolei LI
    Earth Science Frontiers. 2025, 32(1): 302-321. https://doi.org/10.13745/j.esf.sf.2024.10.31

    Sulfur gas geochemical detection has long been applied in mineral exploration. However, this method has not been widely used due to the high activity and reactivity of sulfur gases, low reproducibility of test results, and high cost. Today, as mineral exploration shifts from near-surface, easy-to-discover ore deposits to deep concealed ones, and with the successful development of portable, economical, efficient, real-time gas detection systems, a new opportunity arises to improve and promote this method. This paper reviews research progress, challenges, and future development directions regarding to concealed sulfide-rich deposits. Equilibrium thermodynamic models, simulation experiments on weathering and oxidation of sulfide minerals, and field studies suggest that gas geochemical anomalies of concealed sulfide-rich ore deposits are influenced by their mineral compositions, cover characteristics, geochemical landscapes, and physicochemical characteristics of sulfur gases. In regolith-covered terrains, portable multi-component gas analyzers can be used to obtain on-site, real-time measurements of soil gases including sulfur gases; more importantly, sulfur gas anomalies in soils tend to appear directly above the blind deposits if the blind deposits are covered by regolith directly. In bedrock outcrops, sulfur gases can be measured by rock thermal desorption; and the spatial relationship between the blind deposits and sulfur gas anomalies is primarily influenced by the development of permeable channels such as faults and fractures. Case studies indicate the sulfur gas geochemical detection is effective for mineral exploration in semi-arid and arid terrains and has great potential for mineral exploration in semi-humid and humid terrains. Future research directions should focus on three aspects: the formation and evolutionary process of sulfur gases in surface environment to ascertain the dominant controlling factors; the effectiveness of geochemical detection of sulphur-containing gases under different geochemical landscapes, especially in semi-humid and humid terrains; and the miniaturization and intelligent upgrading of portable soil gas detection equipment.

  • Earth Science Frontiers. 2025, 32(03): 1-6. https://doi.org/10.13745/j.esf.sf.2025.3.88
    全球变化是自然过程与人类活动协同作用的结果,是人类活动主导下地球系统发生的结构性转变,其核心在于地球系统有限承载力与人类无限发展需求之间的矛盾,表现为气候、生态系统和社会经济的变化。圈层相互作用是驱动全球变化的关键因素,精准解析和预测圈层相互作用的过程机制、动态演变及相应的气候、环境和生态效应,有助于揭示全球变化的深层机制、准确评估地球系统突变风险和设计切实可行的可持续发展路径。本专辑聚焦全球变化与圈层相互作用前沿科学问题,从地球系统观测、模拟和管理等方面,详细阐述地球系统关键界面过程机制及其与人类活动的互馈关系,概述了当前全球变化和圈层相互作用研究领域的发展现状和进展,梳理了地球系统科学研究面临的挑战和前沿科学问题,展望了未来发展方向,旨在为全球变化科学应对、人类-自然和谐共生以及社会-生态系统可持续发展提供坚实的理论支撑。
  • Earth Science Frontiers. 2025, 32(02): 153-165. https://doi.org/10.13745/j.esf.sf.2024.11.18
    天然气水合物主要蕴藏于海底沉积物与大陆冻土层中,深入研究多孔介质中水合物的相平衡及其影响因素,对于了解海底沉积物中水合物的形成机制、分布范围和储量评估具有重要意义。当前的相关实验研究大多聚焦于合成多孔介质,而天然沉积物因结构和成分复杂,对水合物相平衡特征影响的研究仍需进一步深化。本文综述了水合物在不同孔径多孔介质中的相平衡变化,全面分析了孔径、粒度以及表面润湿性对水合物相平衡的具体影响。研究揭示,多孔介质产生的强毛细管力会导致水的活性降低,进而抑制水合物的形成,且在纳米尺度范围内具有临界值。此外,较小的多孔介质粒度会增加成核位点和反应界面,从而缩短诱导时间,有利于水合物的成核和生长。至于表面润湿性(亲水和疏水)对水合物形成的影响,目前学界观点尚待统一,但多数研究倾向于认为疏水表面相对亲水表面能更好地促进水合物的形成。
  • Earth Science Frontiers. 2025, 32(03): 137-155. https://doi.org/10.13745/j.esf.sf.2025.3.2
    地球系统是由地质圈、生物圈和人类圈构成的一个有机整体,研究这一复杂系统各圈层内部和圈层之间的物质能量交换及其动力学机制是地球系统科学研究的核心内容。圈层之间的物质能量交换主要受控于水和主微量元素生物地球化学循环。因此,元素的生物地球化学循环是联系地球系统各圈层的物质基础和制约或影响全球变化的关键机制。此外,在社会经济高速发展背景下,人类活动正深刻改变着元素生物地球化学循环,使地球系统发生前所未有的变化。如何精准刻画元素生物地球化学循环、揭示其动力学机制、预测其未来演变趋势及其对生态系统的影响,已成为地球系统科学前沿研究任务和面临的根本挑战。而同位素可有效追踪物质的跨圈层迁移转化和生物地球化学循环,在圈层相互作用和全球变化研究中发挥着不可替代的作用。本文回顾了近年来传统和非传统稳定同位素在示踪圈层相互作用和全球变化方面的研究现状,总结了地球系统各圈层典型同位素组成分布,阐述了圈层界面过程同位素分馏机制,追踪了人类活动对地球环境-生态系统的影响,梳理了地球系统科学框架下同位素地球化学研究面临的挑战和前沿科学问题。未来,应该在进一步完善同位素地球化学方法和理论基础上,在地球系统框架下开展同位素与地理学、生态学、分子生物学、地球系统模拟、人工智能和大数据等前沿领域交叉融合研究,完善示踪复杂地球系统多圈层、多过程、多要素耦合条件下元素生物地球化学循环的同位素分馏理论框架,突破原有应用范式,获得对圈层相互作用、人类活动与全球变化、环境与生命协同演化等领域前沿科学问题的创新认知。
  • Earth Science Frontiers. 2025, 32(02): 94-112. https://doi.org/10.13745/j.esf.sf.2024.6.52
    砂质水合物储层是国际上水合物勘查试采的首选目标,我国在南海北部琼东南盆地钻探发现了高饱和度砂质水合物。通过三维地震、测井、岩心及测试分析资料,证实了规模化成藏的砂质水合物藏。砂质水合物储层表现为低自然伽马、低西格玛、高电阻率、高声波速度和T2谱信号幅度急剧降低等测井响应特征,同时纵波及横波信号均明显衰减。砂层呈楔形近水平席状分布。岩性为粗粉砂-细砂为主,属于深水浊积体系末端的朵体沉积。剖面上,水合物和游离气具有同层分布、横向过渡的特点。平面上,水合物藏呈现椭圆形分布,中部发育伴生游离气,外围发育水合物。与世界其他海域钻探发现的倾斜砂质水合物储层不同的是,该水合物藏是在稳定域底界附近的水平砂层,在下伏气烟囱背景下局部高热流驱动和上覆细粒沉积地层的封盖下,充足游离气由中部向外横向长运移而形成大面积高饱和度水合物。
  • Jishun REN, Jianhui LIU, Junbin ZHU
    Earth Science Frontiers. 2024, 31(1): 142-153. https://doi.org/10.13745/j.esf.sf.2023.7.15

    The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China. The resulted tectonic belts are neither products of the third stage of crustal evolution, as proposed by Chen Guoda, nor intracontinental (or intraplate) orogenic belts generated by intraplate dynamics, as argued by some scholars—rather, they are superposed orogenic belts created on the preformed continental crust in eastern China due to Mosozoic Paleo-Pacific dynamic system. In the past, these orogenic belts were called the peri-Pacific continent-marginal reactivated belts of eastern China. In the Mesozoic, under the effect of Paleo-Pacific dynamic system, the East Asia margin orogenic system formed along Northeast Russia-Sikhote Alin (Russia)-Japan-Ryukyu-Taiwan (China)-Palawan (Philippines) regions, while simultaneously the Mesozoic superposed orogenic system formed in the pre-existing continental crust in eastern China adjacent to the East Asia continental margin. The two orogenic systems, both driven by Mesozoic Paleo-Pacific dynamic system, developed synchronously to form the giant Mesozoic orogenic system in the Pacific tectonic domain in eastern Asia, radically changing the pre-Indosian tectonic framework of eastern Asia.

  • Earth Science Frontiers. 2025, 32(03): 334-349. https://doi.org/10.13745/j.esf.sf.2025.3.68
    青藏高原南部构造运动活跃,为深源含碳流体的形成和释放创造了有利条件,使其成为现今全球最重要的深部碳释放地区之一。如何估算地质历史时期构造运动导致的深部碳释放通量是探索青藏高原生长动力学过程对深部碳释放影响的重要科学问题,也是重建印度-亚洲大陆碰撞造山带地质碳循环的关键环节。活动断裂带内广泛出露的钙华沉积物为回溯地质碳排放提供了理想对象。本研究对青藏高原南部活动断裂带的44个钙华样品进行了铀系年代学、矿物学、元素和同位素地球化学分析,结果显示:(1)钙华U-Th年龄为267.3~1.8 kyr B.P.,形成于中更新世至全新世,沉积速率约为0.02~1.49 mm·yr-1;(2)钙华主要由方解石组成,个别具有方解石和文石混合特征,CaCO3平均含量为94.2%;(3)碳-氧同位素组成(δ13CV-PDB=-3.1‰~+8.6‰;δ18OV-SMOW=-0.5‰~+15.0‰)显示钙华具有热成因性质,沉积过程中受到不同程度的CO2脱气、泉水沸腾及蒸发作用的影响;深部碳是钙华中总碳的最主要来源。基于钙华体积、孔隙度、CaCO3含量以及沉积时间,估算得到研究区伴随钙华沉淀释放的CO2通量处于10~4~10~6 mol·km-2·yr-1数量级,与意大利中西部构造活跃区的部分钙华沉积区相当。本研究为理解藏南活动断裂带中钙华的形成年代、成因机制以及CO2释放通量提供了新视角,对于全面认识印度-亚洲大陆碰撞造山带的深部碳循环特征具有重要意义。
  • Earth Science Frontiers. 2025, 32(03): 23-34. https://doi.org/10.13745/j.esf.sf.2025.3.12
    构造-地貌-气候-生态系统的相互作用构成了表层地球系统的核心动力学框架。这些要素之间的内在联系和作用体现了系统科学的属性:构造运动首先塑造了大地地貌格局,并与气候和生态系统形成了相互作用系统;气候因子驱动地貌演变和生态系统变化;生态系统通过生物地球化学循环反馈于地貌和气候。构造-地貌-气候-生态系统的协同作用是表层地球系统演化的核心内容。从地质时间尺度看,板块运动和地貌重组引发了区域气候变化和生物群落更替;在现代尺度上,这种耦合关系塑造了地球表层环境的动态平衡。对构造-地貌-气候-生态系统的系统研究对揭示表层地球系统过程和功能以及服务机理至关重要。本文通过梳理构造与气候和地貌、地貌和气候与生态系统变化的耦合关系,旨在探索构造-地貌-气候-生态系统动力学和表层地球系统科学研究的系统性思路。同时,青藏高原是研究这一主题的天然实验室,其独特的构造活动、复杂的地貌形态、多样化的气候带和敏感的生态系统提供了系统研究的关键平台。围绕青藏高原构造-地貌-气候-生态系统的综合研究,将帮助解决青藏高原表层地球系统科学中的前沿科学问题,为全球环境变化研究提供借鉴。构造-地貌-气候-生态系统动力学研究发展需要注重各要素之间的定量耦合关系与协同演化,深化多学科交叉融合,利用先进的实验测试与观测/监测技术,强调大数据驱动的多尺度整合与人工智能的深度应用,构建地球系统动态耦合模型,以期达到对地球系统多圈层相互作用的深入理解,并为应对全球变化带来的挑战提供理论支撑。
  • Qingqing LIU, Xueqiu WANG, Bimin ZHANG, Jian ZHOU, Wei WANG, Hanliang LIU, Dongsheng LIU, Yining ZHOU, Chan CHANG
    Earth Science Frontiers. 2025, 32(1): 50-60. https://doi.org/10.13745/j.esf.sf.2024.10.35
    Abstract (20) PDF (2) HTML (13)   Knowledge map   Save

    Boron (B) is a new strategic mineral widely used in modern high-tech industries. In recent years the exploration of boron mineral resource has received increasing attention as the demand for boron contineous to rise. The overall distribution characteristics of boron in China is very important for boron prospecting. Based on analyses of the 3380 deep soil samples collected by the China Geochemical Baseline (CGB) project, this paper reveals the geochemical and anomaly distribution characteristics of boron in China. We found that the average boron concentration in deep sediments/alluvial soil of China was 46.4 mg/kg, showing a trend of high in the south and low in the north, with contiguous distribution across five geochemical zones: northeastern China and eastern Inner Mongolia (Ⅰ); northwestern China (Ⅱ); northern China (Ⅲ); Qinghai-Tibet (Ⅳ) and southern China (Ⅴ). Taking 70.9 and 52.4 μg/g (cumulative frequency 85%) as the lower anomaly thresholds in the south and the north, respectively, we identified a total of 37 geochemical anomalies, which were classified into ten geochemical provinces and nine individual anomalies. According to the spatial distribution of boron anomalies, combined with the geological background and distribution of boron deposits, we further delineated nine metallogenic prospective areas. We suggest that more efforts should be made to explore boron-rich salt lake deposits, and that hard rock (marine sedimentary) boron deposits should be the next exploration target.

  • Huishan ZHANG, Jing ZHANG, Jun HONG, Dehua XI, Zhongping MA, Guanglu MENG, Yanjun LUO, Haidi ZHANG, Mingyi LIU, Pengrui LÜ, Bo YANG, Jifei CAO
    Earth Science Frontiers. 2025, 32(1): 142-161. https://doi.org/10.13745/j.esf.sf.2024.12.36
    Abstract (15) PDF (2) HTML (8)   Knowledge map   Save

    VMS deposits from thePaleo-Tethys stage are only exposed in the Sanjiang region of China. Whether this type of deposit exists in other parts of the Tethys or its metallogenic potential remains critical scientific and practical issues of interest. The Pamir region of Tajikistan, located between the Qinghai-Tibet Plateau and the Iranian Plateau, is an important component of the Tethys domain. The region remains underexplored due to limited geological work, a lack of systematic geological surveys and investments, and the absence of significant breakthroughs in mineral exploration to date. Geochemical surveys serve as an effective method for analyzing the distribution characteristics of metallic elements such as copper, lead, and zinc, while also enabling the rapid identification and prioritization of promising exploration areas and targets.

    Based on the geochemical survey data at scales of 1∶1000000 and 1∶250000 jointly conducted by the China Geological Survey and the Tajikistan Geological Survey, this study focused on 1∶50000 geochemical surveys in anomalous areas and conducting anomaly verification, followed by anomaly verification and genetic analysis of the discovered mineralized bodies, while also exploring the regional mineralization potential. The research findings are as follows: (1) The primary anomalous element associations in the Tokhtamesh area of the Pamirs include Fe, Cu, Pb, Zn, Ag, Sb, Au, and As. The anomalies are large in scale, high in intensity, and show distinct zonation in concentration, with anomalies clearly controlled by strata and fault structures. Two prospective exploration target zones, labeled Z01 and Z02, were identified. These zones show potential for discovering massive sulfide copper-lead-zinc deposits and hydrothermal vein-type gold deposits. (2) Anomaly verification revealed six iron-copper polymetallic mineralization bodies, with three phases of mineralization identified. The first phase is the main mineralization period, forming VMS-type copper-lead-zinc mineralization bodies within Permian strata (Z01 target zone: Mineralization bodies I and II). The second phase is a hydrothermal reformation period involving deformation and metamorphism, forming bed-parallel and cross-layer vein-like iron-copper mineralization bodies (Mineralization bodies III, IV, V, and VI) and modifying the preexisting VMS-type copper-lead-zinc bodies. The third stage corresponds to the supergene oxidation period, during which weathering and erosion oxidized the previously formed mineralized bodies, resulting in zoning phenomena. It is inferred that the Z02 prospecting target area still holds potential for discovering VMS-type copper-lead-zinc deposits. (3) The Pamir-Tianshuihai area of Tajikistan-China demonstrate good metallogenic potential for VMS copper-lead-zinc deposits, with nine prospective exploration areas predicted. It is proposed that the Permian strata of the Paleo-Tethys stage within the Tethys region offer promising prospects for the exploration of VMS massive sulfide deposits, representing an important direction for future exploration efforts.

  • Feng LIU, Guiling WANG, Guangzheng JIANG, Shengbiao HU, Wei ZHANG, Wenjing LIN, Jinhui LIU, Xinyong ZHANG, Zewei QU, Chuanzhi LIAO
    Earth Science Frontiers. 2024, 31(6): 19-30. https://doi.org/10.13745/j.esf.sf.2024.7.8

    Terrestrial heat flow is a key parameter in geothermal researches. Building upon the analyses of previously compiled terrestrial heat flow data, this paper examines the newly measured (260 sets), collected and screened (112 sets) data by authors since 2016. The added heat flow data effectively filled large data gaps in the southwest, northwest and northeast and improved the data density in the eastern region of China mainland. The proportion of high-quality data was improved to 86.3%. Using the latest data the calculated average terrestrial heat flow in China was 63.8 mW/m2, higher than the national average value in the fourth compilation, with higher average values found for most of the primary and secondary tectonic units of China and lower values for the Qinghai-Tibet Plateau. The statistics of heat-flow data of typical geothermal systems showed that high average heat flow conditions could significantly improve the distribution range of conductive geothermal resources and the output temperature of hot springs, but were not a controlling factor for the formation of the two types of geothermal resources. Based on the latest terrestrial heat flow data and contour map of China related phenomena and problems were discussed, such as the increase of low heat flow area in the Qinghai-Tibet Plateau, the “overestimation” of early heat flow data in the North China Plain, and the existence of heat flow indicator magma sacs in the Changbai Mountain. It was noted that heat flow monitoring stations in China were still relatively few, and, with the continuous updating and standardization of the measurement methods, plus further improvements in data quantity/quality and sampling locations, the previously assessed regional heat flow characteristics might need to be re-examined. This study deepens the understanding of the status of terrestrial heat flow in China, and can provide better support for regional geothermal basic research and resource exploration.

  • Guochao CHEN, Xiaofei ZHANG, Xianzhi PEI, Lei PEI, Zuochen LI, Chengjun LIU, Ruibao LI
    Earth Science Frontiers. 2024, 31(3): 1-19. https://doi.org/10.13745/j.esf.sf.2023.9.42

    The Xigaze ophiolite is a significant feature of the Yarlung Zangbo suture zone, yet its origin and tectonic setting have been subject to debate. This study focuses on the ophiolite in the Quedingbu-Luqu area of Xigaze. Through detailed field geology, petrology, mineral chemistry, and petrochemistry analyses, it is established that the ophiolite predominantly comprises harzburgite with minor occurrences of gabbro, diabase, and basal. A comparison between the Quedingbu and Luqu harzburgite reveals differences in olivine composition, with the former exhibiting lower Fo values, and variations in Al2O3 and Cr2O3 content in orthopyroxene. Moreover, clinopyroxene displays higher Al2O3 and Cr# values, while spinel shows lower Cr# and TiO2 contents. The Quedingbu-Luqu harzburgite is characterized by high MgO content and low Al2O3, CaO, and TiO2 contents. The total rare earth element (REE) contents range from 0.17×10-6 to 1.63×10-6, lower than those of primitive and depleted mantle. Luqu harzburgite exhibits high LREE/HREE and (La/Yb)N ratios, while Quedingbu harzburgite shows lower values. Luqu harzburgite displays a LREE-enriched U-type REE distribution pattern, whereas Quedingbu harzburgite exhibits a LREE-depleted left dipping REE distribution pattern. The large ion lithophile elements Rb and Ba in Luqu harzburgite are higher than in Quedingbu harzburgite, while K and Sr are lower. The Quedingbu-Luqu harzburgite likely originates from spinel lherzolite in the mantle. The mineral chemistry and whole-rock geochemical characteristics of Quedingbu-Luqu harzburgite resemble that of deep-sea mantle peridotite. Quedingbu harzburgite represents residue from 10% to 15% partial melting, while Luqu harzburgite represents residue from 20% to 25% partial melting. The formation of Quedingbu-Luqu harzburgite occurred in a slow to ultra-slow extensional ocean ridge environment. The diversity of the Xigaze ophiolite is closely tied to the degree of partial melting in the source and subsequent melt/fluid metasomatism.

  • Biaobiao ZHU, Wei CAO, Pengpeng YU, Qianlong ZHANG, Lanxuan GUO, Guiqiang YUAN, Feng HAN, Hanyu WANG, Yongzhang ZHOU
    Earth Science Frontiers. 2024, 31(4): 73-86. https://doi.org/10.13745/j.esf.sf.2024.5.10

    To investigate the current status, hotspots, and frontiers of big data and artificial intelligence research in the field of geology, this study conducts literature screening of relevant research publications between 2000-2022 using China National Knowledge Infrastructure (CNKI) and Web of Science (WoS) core databases. A total of 3600 Chinese and 1803 English articles are collected, and community structure analysis software CiteSpace is used for visual analysis of cooperation authors, research countries/institutions, keyword clustering, and keyword spatiotemporal distribution maps. Furthermore, a stochastic frontier analysis correction is conducted on publications by international top-tier geoscience journals (comprehensive impact factor ≥10) between 2021-2022. The global cumulative publication volume in this research field had surged in the past decade, led by Asian countries represented by China and European/American countries represented by the United States, with China and the United States showing no significant differences, and the betweenness centrality measures generally higher for European/American countries than for Asian countries. In China, research collaborations were mostly among domestic institutions and relatively rare with foreign research institutions, whilst the opposite was true in foreign countries. The research hotspots in this field were geological disaster prevention and control, earthquake interpretation, petroleum and natural gas exploration, and solid mineral resource prediction using machine learning and knowledge graphs. Research frontiers included significant geological events during Earth’s evolution, global climate change, polar and marine geology, digital geological modeling and quantitative analysis, earthquake prediction, and accurate assessment of geological disaster susceptibility by means of deep learning, integrated learning, and intelligent platform.

  • Shucheng XIE, Zongmin ZHU, Hongbin ZHANG, Yi YANG, Canfa WANG, Xiaoyan RUAN
    Earth Science Frontiers. 2024, 31(1): 446-454. https://doi.org/10.13745/j.esf.sf.2023.10.4

    Interactions between Earth's spheres, particularly between deep Earth and surface processes or within the surface system between sea, land and the atmosphere, are a critical issue in Earth system science. Such a large-scale geological process could be recorded by tiny microbes preserved in the fossil record. Triggered by volcanic activities during the Permian-Triassic transition and in the Late Ordovician, the bloom of nitrogen-fixation bacteria including cyanobacteria and the subsequent expansion of eukaryotes including algae, radiolarians and foraminifers clearly reflected a volcanism-induced shift from prokaryotes to eukaryotes. Furthermore, it has been shown that microbial activity could lead to banded iron formations to trigger Pre-Cambrian volcanic activity and even initiate plate movement in the early Earth. These data demonstrated the critical interaction between volcanic activity and the microbial community impacting carbon cycling. Microbes could also trace the complex interaction between sea, land, and the atmosphere and its associated long-range material transport process. Using microbial proxies for hydroclimate we identified the tri-pole mode of spatial variability of dry/wet status in eastern China on different time scales, as well as the extreme drought events in northwestern China triggered by the upper-ocean thermal condition in the tropical western Pacific Oceans. The spatiotemporal variations in dry/wet status reflected in the microbial records are due to variations in sea-land-atmosphere interactions between high- and low-latitude environments. The carbon- and water cycle-associated cross-sphere processes reflected in microbial fingerprints only represent a small portion of Earth sphere interactions. The great contribution of the microbial community in shaping the habitable Earth has yet to be fully deciphered. With research advancement and technical/methodological innovation in geobiology more questions can be addressed, including the interaction between geomicrobiological and deep Earth processes, microbial contribution to the major paleoclimatic shifts and paleoenvironmental changes, and impact of the microbial community on ecological evolution.

  • Fengxin KANG, Baojian ZHANG, Yang CUI, Song YAO, Meng SHI, Peng QIN, Haibo SUI, Tingting ZHENG, Jialong LI, Haitao YANG, Chuanlei LI, Chunwei LIU
    Earth Science Frontiers. 2024, 31(6): 31-51. https://doi.org/10.13745/j.esf.sf.2024.7.9

    High-temperature geothermal reservoirs with temperature above 150 ℃ have been successively discovered in China—mainly in southern Tibet, Yunnan and Sichuan in the Mediterranean-Himalayan geothermal belt, and Taiwan in the Pacific Rim geothermal belt. In recent years breakthroughs in high-temperature geothermal prospecting have also been made in cental and eastern North China. For example, in 2019 in Hebei, granite dry hot rock mass with a temperature of 151 ℃ was drilled at a depth of 4000 m in Matouying. In 2020, a geothermal fluid of 167 ℃ in high temperature gneiss fissure reservoir was drilled at 1586 m depth in Tianzhen County, Shanxi Province. And in 2023 in Shandong, a high-temperature Ordovician limestone karst reservoir with a temperature of 167.5 ℃ was drilled at 4283 m depth in Zhuanxi area, Dongying City. It is therefore an urgent task to systematically study the formation of high-temperature geothermal reservoirs in this region as well as related exploration technologies. Taking the above three high-temperature geothermal fields as examples, this paper analyzes the dynamic process underlying the effect of regional crust-mantle structure, deep geological processes—such as crust-mantle upwelling and Moho uplift-on the shallow high-temperature thermal anomalies in the Earth’s crust. Combined with geophysical and geochemical studies and exploration results, this paper explains how deep geodynamic processes shape the Earth’s shallow geothermal field and constrain high-temperature thermal anomalies, and discusses technologies to identify deep heat sources, upwelling channels and thermal energy gathering structures. The paper also explores the formation mechanism of high-temperature geothermal reservoirs in typical locations and its significance for high-temperature geothermal exploration in central and eastern North China. Briefly, (1) under the far field effect of the India-Eurasia plate collision and subduction retreat of the Western Pacific plate, the destruction of the North China Craton (NCC) leads to deep geodynamic processes—such as lithospheric thinning, asthenospheric upwelling and thermal erosion, extensional rift basin and deep strike-slip fault development—which are the main driving forces behind the upwelling of mantle-derived molten material to the shallow crust. (2) There is a good corresponding relationship between a high conductivity-low velocity-low resistivity body, geochemical evidence and high-temperature geothermal resource distribution. Therefore, it is believed that the upward infiltration of molten materials causes shallow thermal anomalies, and the molten/semi-molten magma sac in the crust provides a stable heat source to form high-temperature geothermal reservoirs. The weak lithospheric structures-such as plate margin zones and deep strike-slip faults—cut into the lithosphere, constituting the main channels for the upward infiltration of the molten material. (3) The concave-convex tectonic pattern and groundwater flow field mainly control the heat distribution in the shallow crust. Under the “thermal refraction” effect driven by the difference in thermal conductivity of shallow rocks, heat flow accumulates from the sag to the uplift, forming high-temperature thermal anomalies in ancient buried hills.

  • Earth Science Frontiers. 2025, 32(03): 436-444. https://doi.org/10.13745/j.esf.sf.2025.3.42
    近百年来京津冀地区社会经济快速发展、城市化进程加快、农田扩张、用水需求提高,叠加气候变化,导致区域水资源衰减和供需严重失衡;近年来大规模调水、节水、产业结构调整等缓解了水资源衰减和供需失衡状态;未来低碳、绿色发展以及应对全球变化,京津冀地区社会经济、生态环境将面临极大的调整,水资源演变情势、供需结构和安全保障将面临一系列新的挑战。本文将京津冀地区水文情势及水资源供需演变划分为三个阶段,系统分析历史不同阶段水资源演变“S型”曲线形成及驱动机制,阐述低碳、绿色发展以及应对气候变化对水资源供需格局转变的影响,提出促进当地水资源恢复能力的水循环机理以及提升应对极端气候变化的水资源保障能力研究途径,为京津冀地区乃至其他缺水地区水资源可持续利用提供科学支撑。
  • Yining ZHOU, Yanfang GAO, Chan CHANG, Qingqing LIU, Xueqiu WANG
    Earth Science Frontiers. 2025, 32(1): 257-265. https://doi.org/10.13745/j.esf.sf.2024.12.35
    Abstract (72) PDF (1) HTML (70)   Knowledge map   Save

    Geochemical field sampling is a critical component of geochemical exploration. There has long been a significant lack of specialized software support for information technology in geochemical field sampling. With the rapid development of information technology, traditional field geochemical survey models are accelerating their transformation towards intelligence, convenience, and modernization. Therefore, it has become an inevitable trend to informatize the entire process of geochemical field sample collection. This article systematically summarizes the key development directions and core technical characteristics of geochemical field investigations and geological survey informatization based on the latest progress in geological survey informatization both domestically and internationally. It also delves into the functional requirements and characteristics of future geochemical field survey systems. The research aims to promote the digitalization and informatization of geochemical field sample collection, laying the foundation for constructing an information product system that covers the entire geochemical exploration process while also enhancing the overall service capacity of geological survey informatization. This will ultimately help establish a product system for the informatization of the entire geochemical exploration process and improve the quality of geological survey informatization services.

  • Earth Science Frontiers. 2025, 32(03): 35-51. https://doi.org/10.13745/j.esf.sf.2025.3.3
    土壤圈是表层地球系统中大气圈、水圈、生物圈和岩石圈相互作用的产物,在地球表层系统演变中起着关键作用。本文回顾了控制土壤形成和演化的界面过程,强调了它们复杂的相互作用和反馈机制。土壤圈的形成和演化受物理和化学风化过程、气-水-岩异质反应以及生物有机质-矿物相互作用的协同影响。这些过程在不同的地理、气候和生物条件下有所不同,导致土壤的异质性和组分多样性。本文将界面过程分为两大类:无机圈之间的相互作用和生物与无机圈之间的相互作用。无机圈之间的相互作用包括空气和水对岩石的改造、热交换、风蚀、水-岩反应和成岩作用。这些过程对母质的物理分解和化学转变至关重要。生物与无机圈之间的相互作用包括光合作用、呼吸作用和微生物降解有机物的有机碳输入和输出,以及生物转化,其中涉及生物矿物营养素的释放和矿物-有机质聚集体的形成。本文探讨了土壤圈与生物圈的关系,强调了土壤与生态系统之间的物质和能量交换及其对生态系统的支撑作用。此外,本文还讨论了土壤在生态系统服务中的作用,如生产力、生物多样性维护和气候调节。最后,本文强调了多时间和多空间尺度研究的重要性,以了解地表过程对土壤圈演化的影响,并确定未来的研究热点。总体而言,本文详细概述了驱动土壤形成和演化的界面过程,强调了它们在维持生态平衡、支持人类活动和应对全球环境挑战方面的重要性。
  • Earth Science Frontiers. 2025, 32(02): 1-19. https://doi.org/10.13745/j.esf.sf.2024.6.56
    天然气水合物因其潜在的能源价值而备受关注,我国自20世纪90年代开始在南海开展水合物调查,截至目前已实施了9个水合物钻探航次,取得了一系列水合物找矿突破。钻探结果证实,南海北部发育多种类型水合物,神狐海域主要发育扩散型水合物,东沙海域发育复合型水合物,琼东南发育渗漏型及砂质型水合物。本文结合钻探成果,详细阐述了各种类型水合物的地震反射特征以及测井响应特征。扩散型天然气水合物在地震上主要表现为显著的BSR以及BSR之上的强正极性反射,在测井上主要表现为高电阻率、高纵波速度和高横波速度,如出现水合物与游离气共存的混合层则在测井上表现为高电阻、低纵波速度、高横波速度和中子-密度反交等特征。渗漏型水合物在地震上通常不发育典型的BSR,BSR之上发育亮点反射或者浅部地层发育上拉反射以及柱状的空白反射,海底发育显著的异常地貌,如丘状体和麻坑,在测井上表现为极高的电阻率、稍微增高的纵波及横波速度、高角度层理等特征。砂质水合物在地震上表现为极强的BSR和指示砂质水合物的强正极性反射,测井上表现为低伽马、极高的电阻率、极高的纵横波速度、略微增高的密度和略微降低的中子孔隙度等特征。最后总结了神狐及琼东南水合物成藏控制因素,认为神狐海域发育的深大断裂以及倾斜的天然堤沉积控制了神狐海域高丰度天然气水合物藏的发育,而琼东南海域水合物发育受古潜山及差异压实作用控制。
  • Wei JU, Hui YANG, Guiting HOU, Weike NING, Yongkang LI, Xiaobai LIANG
    Earth Science Frontiers. 2024, 31(5): 130-138. https://doi.org/10.13745/j.esf.sf.2024.6.20

    Natural fractures are important reservoir spaces and seepage channels for oil and gas. In complex structural deformation zones, fractures are obviously controlled by faults, but the laws and modes of fracture formation are not yet clear. This study investigates natural fractures developed in complex fault zones in the Kuqa depression. Based on geological observation, fracture interpretation from imaging logging, and theoretical analysis, a “fault-controlled fracture coefficient (K)” is defined and calculated to reveal the development and distribution pattern of fault-controlled fractures in the study area. The results indicate (1) the thrust faults obviously control both the occurrence and development of natural fractures, where the fracture density is exponentially inversely proportional to the distance from the fault, and the fault-controlled fracture zones can be divided into strongly-controlled, weakly-controlled, and regional fracture zones with increasing distance to the fault. (2) Among the strike-slip faults, high-angle oblique faults develop fault-controlled fracture zones where fracture development is significantly affected by the scale of the faults; while fractures associated with oblique thrust faults are mainly developed within the fault zone, and the width of the fault zone varies along the strike direction. (3) The fault-controlled fracture coefficient (K) is defined as the ratio of the width of the strongly-controlled fracture zone to the fault displacement (slip displacement). According to the analysis, the K values of thrust faults in the Kuqa depression ranged between 1.50-1.80, and that of strike-slip faults ranged between 0.125-0.150. The results have both theoretical and practical significance for guiding oil and gas exploration and development in complex structural deformation zones.

  • Yuntao LI, Wenlong DING, Jun HAN, Cheng HUANG, Laiyuan WANG, Qingxiu MENG
    Earth Science Frontiers. 2024, 31(5): 263-287. https://doi.org/10.13745/j.esf.sf.2024.6.27

    Tectonic fractures are one of main reservoir spaces in carbonate rocks, which can provide a good conduit for oil and gas transportation and reservoir space in tight limestone. The development of tectonic fractures is affected by various factors such as tectonic location, lithology, reservoir thickness, temperature, peripheral pressure and tectonic faulting, among which tectonic faulting caused by local tectonic stress in the regional tectonic stress field is an important factor controlling the development of tectonic fractures. In view of the characteristics of carbonate reservoirs and fracture development, we use the inversion function of rock mechanical parameters based on 3D seismic data volume, calibrated using dynamic rock mechanical parameters for a single well, to obtain a non-homogeneous rock mechanical model to improve the authenticity and accuracy of mechanical parameters in the model in the simulation of the stress field. Using the method of self-adaptive boundary condition constraint the optimal boundary conditions are automatically obtained when the error between the simulation and measured results is minimized, significantly improving the accuracy and reliability of the stress field simulation. On this basis, the fracture development characteristics and fracture activity in reserviors in the SHB16 fault zone and adjacent areas are quantitatively characterized using parameters including reservoir tensile rupture rate, shear rupture rate, comprehensive rupture rate, horizontal stress difference, stress difference coefficient, and sliding trend coefficient for the fault plane. We carried out qualitative and quantitative investigation into the effect of controlling parameters, such as horizontal stress difference, distance from faults and fault activity intensity in the vertical direction, on the fracture development characteristics; the correlations between variables were quatified using Spearman’s rank correlation coefficient. On the basis of clarifying the controlling factors of reservoir fracture development, we constructed the reservior development indexes for Ordovician carbonate reservoirs to classify the Ordovician carbonate reservoirs into categories I-IV from the best to the worst, and clarified the correlation between the deformation modes of the strike-slip faults and the degree of fracture development in sizable reserviors, further establishing the geologic model under different reservoir categories. The above results not only improve the accuracy and reliability of quantitative prediction of fracture development characteristics and multiparameter distribution rules based on stress field simulation, but also have significant importance for speeding up the exploration and development process of carbonate reservoirs.

  • Caiyun SUN, Bingqing ZHENG, Jun LI, Hongming FU, Rongqing SUN, Honghao LIU, Zuying LIAO, Hongsheng JIANG, Zhenbin WU, Shibin XIA, Pei WANG
    Earth Science Frontiers. 2024, 31(5): 430-439. https://doi.org/10.13745/j.esf.sf.2024.2.9

    Karst carbon sinks are an important means of achieving carbon neutrality, and their stability is a key scientific issue that needs to be addressed. Approximately 45% of annual photosynthesis on Earth occurs in aquatic environments, yet how submerged plants in karst areas affect the stability of karst carbon sinks remains unknown. This study focused on submerged plants in three karst rivers. We employed quadrat sampling, pH-drift technology, and elemental stoichiometry to qualitatively and quantitatively examine the effects of submerged plants on the stability of karst carbon sinks. Our results showed that there were 8, 5, and 7 species of submerged plants in the ZDR, CTR, and HXR, respectively. The Shannon-Wiener diversity index and Simpson dominance index ranked as ZDR>HXR>CTR. In the three karst rivers, Vallisneria natans, Ottelia acuminata, Potamogeton wrightii, and Hydrilla verticillata were the dominant species, all of which had the ability to utilize $\mathrm{HCO}_{3}^{-}$. The annual carbon sequestration rates of submerged plants in the ZDR, HXR, and CTR were 8.56×103 g·m-2·a-1, 4.83×103 g·m-2·a-1, and 3.88×103 g·m-2·a-1, respectively, with an average of 5.76×103 g·m-2·a-1, which are 37.65 and 40.56 times higher than those of grasslands and man-made forests, respectively. The higher the diversity of submerged plants in rivers, the higher the carbon sequestration. Overall, submerged plants play a crucial carbon pump role in karst aquatic ecosystems, thereby enhancing the stability of karst carbon sink.

  • Shunyao ZHANG, Zeming SHI, Zhibin YANG, Yalong ZHOU, Fugui ZHANG, Min PENG
    Earth Science Frontiers. 2024, 31(4): 354-365. https://doi.org/10.13745/j.esf.sf.2023.5.29

    Soil methane emissions in permafrost regions are integral components of the global carbon cycle and terrestrial ecosystem, playing a pivotal role in the feedback mechanism of carbon sink on climate change, thus warranting focused research in the domain of global climate change. The origins of soil methane emissions in permafrost regions primarily stem from microbial methane production and gas release from frozen soil layers and natural gas hydrates. While research on microbial gas sources is relatively advanced, investigations into methane emissions from frozen soil layers and natural gas hydrate gas sources are still in the qualitative analysis stage. Influential factors such as soil temperature, moisture, water table conditions, organic matter content, surface vegetation conditions, and others can significantly influence various stages of methane production, transport, and oxidation. Modeling stands as the primary approach for evaluating and forecasting soil methane emissions in permafrost regions, encompassing both early statistical models and more recent process models based on the mechanisms of methane emission from soil. Although the synthesis of research on methane emissions from permafrost soils has yielded insights into gas sources and single-factor effects, there remain gaps in the study of multi-source methane emission, particularly concerning methane release from permafrost soil and gas hydrates. Furthermore, the analysis of causal mechanisms and driving forces under multiple factors is lacking in the investigation of influential factors. Comprehensive monitoring research employing diverse methods and factors, such as metagenomic analysis of methane-producing microorganisms and isotope tracing of multi-gas source soil methane emissions, can be integrated with satellite remote sensing and other large-scale observation results to refine process models of methane emissions from permafrost soils. Given that changes in the carbon cycling system of the Qinghai-Tibet Plateau, revered as the “Third Pole” of the world, will exert significant impacts on climate change in Asia and globally, further exploration of soil methane emissions on the Qinghai-Tibet Plateau is imperative to facilitate the quantitative assessment of regional carbon emissions and advance global climate change research.

  • Anhuai LU, Yifei DU, Qian FANG, Hongrui DING, Yan LI
    Earth Science Frontiers. 2025, 32(1): 466-469. https://doi.org/10.13745/j.esf.sf.2024.12.122
    Abstract (62) PDF (1) HTML (60)   Knowledge map   Save

    Photosynthesis is the primary determinant of crop yield, with the current energy conversion efficiency of crop photosynthesis being only about 2%, which significantly limits the yield of grain and vegetable crops. Earth Science Frontiers is dedicated to advancing global scientific and technological frontiers and addressing primary economic concerns, having reported on a series of our scientific research findings over nearly three decades. Recently, Earth Science Frontiers has continuously been reporting on groundbreaking research on mineral-enhanced biological photosynthesis and its breakthrough applications in solving the international challenge of improving crop yield and quality in agriculture. Our latest studies have further confirmed that the manganese clusters (Mn4CaO5) in plant chloroplasts have an evolutionary and genetic relationship with birnessite in the mineral membrane on the surface of soils and rocks, and both exhibit similar functions in photocatalytic water splitting. The infrared emission spectra of minerals can affect the function of water and promote the function of photocatalytic water splitting. Classical plant photosynthesis is confined to the absorption and conversion of sunlight by manganese clusters in chloroplasts. In contrast, mineral-based non-classical photosynthesis outside of chloroplasts can expand the utilization range of the solar spectrum through functionalized water; that is, by altering the functionality of irrigation water, the efficiency of solar energy conversion can be improved. This has opened up a new way to improve the efficiency of plant photosynthesis. Based on this theory, we have proposed the innovative “mineral-water-photosynthesis” technology, which has achieved a 20%-50% increase in crop yields in field trials, significantly enhancing the yield and quality of various crops. This represents a pioneering example of how natural minerals can influence water functionality to promote biological photosynthesis.

  • Lirong DOU, Wensong HUANG, Xiangwen KONG, Ping WANG, Zibin ZHAO
    Earth Science Frontiers. 2024, 31(4): 191-205. https://doi.org/10.13745/j.esf.sf.2023.9.36

    The Duvernay shale in the Upper Devonian is a formation of shale rich in oil and gas, created during the peak transgression period in the Western Canada Basin. This study aims to elucidate the factors influencing hydrocarbon enrichment in the Duvernay shale through the analysis of sedimentary elements, fluid distribution, reservoir quality, and drivers of organic matter enrichment. Utilizing data from cores, well logging, thin sections, scanning electron microscopy, 3D pore reconstruction, and organic geochemistry, this research examines the geological context to determine that oil and gas accumulation in the Duvernay shale is governed by the sedimentary conditions of siliceous shale, organic matter thermal maturity, reservoir quality, and stable structural settings. The Duvernay Formation, situated in a deep-water shelf environment during the Late Devonian, comprises primarily marl, mudstone, and shale lithologies. it is observed that Type II and III marine organic matters are abundant in the Duvernay shale through the identification of ten lithofacies, with siliceous shale being predominant. These organic materials exhibit moderate thermal maturity, falling within the condensate to wet gas stage, leading to a high condensate to gas ratio. Oil and gas are predominantly found in siliceous shale with organic pores created by clay-grade minerals, showcasing organic and intra-granular pore types. The shale possesses high effective porosity, with well-connected and horizontally distributed pores that display vertical connectivity characteristics. Diagenesis enhances the physical properties of the shale reservoir, while natural fractures boost permeability. Ultimately, the preservation of Duvernay shale oil is heavily dependent on a stable structural setting.

  • Yongzhang ZHOU, Fan XIAO
    Earth Science Frontiers. 2024, 31(4): 1-6. https://doi.org/10.13745/j.esf.sf.2024.6.99

    This special issue titled “Artificial Intelligence and Big Data Geoscience” consists of 17 papers covering topics such as knowledge graphs, deep learning-based image recognition, machine-readable expression of unstructured geological information, big graph data and community detection, association rule algorithms, 3D geological simulation and mineral prospecting, and the Internet of Things and online monitoring systems. A progressive multi-granularity training deep learning method is proposed for mineral image identification; the model achieves 86.5% accuracy on a commonly used dataset comprising 36 mineral types, increasing the accuracy of mineral identification. Knowledge related to porphyry copper ore in the Qinzhou-Hangzhou mineralization belt, South China, is collected using both primary and literature data sources, and Natural Language Processing (NLP) techniques are used to semantically correlate and reason over the knowledge graph, enabling automated knowledge extraction and reasoning. The association rule algorithm is used to analyze the correlation between trace elements and gold mineralization in major Carlin-type gold deposits in the “Golden Triangle” region of Yunnan-Guizhou-Guangxi provinces, China, and combined with the migration and enrichment law of elements to analyze the genetic mechanism of deposits. By builing a quantitative prospecting indicator method based on association rule algorithm, this study provides new ideas for establishing quantitative prospecting indicators for other types of deposits. In study of machine-readable expression of unstructured geological information and intelligent prediction of mineralization associated anomaly areas in Pangxidong District, western Guangdong, China, unstructured geological information such as stratigraphy, lithology and faults is processed by machine-readable conversion, and two machine learning algorithms—namely, One-Class Support Vector Machine and Auto-Encoder network—are applied to mine the geochemical test data of the stream sediment as well as the comprehensive geological information such as faults and stratigraphy, to extract the features of the mineralizing anomalies, and ultimately realize the intelligent circling of mineralizing anomalous areas. In study of networked monitoring of urban soil pollutants and visualized system based on microservice architecture, a system capable of real-time online monitoring, processing, and analyzing urban soil pollution data to enhance the timeliness of predictions and warnings is developed, where the integrated monitoring and data visualization system is based on the microservices framework Spring Cloud Alibaba. The above mentioned studies provide highly valuable application scenarios and research cases, reflecting to some extent the latest research advances in the field of artificial intelligence and big data geoscience in China, and are worthy of peer attention.

  • Shaoqun DONG, Lianbo ZENG, Chunqiu JI, Yanbing ZHANG, Jingru HAO, Xiaotong XU, Gaosong HAN, Hui XU, Haiming LI, Xinqi LI
    Earth Science Frontiers. 2024, 31(5): 166-176. https://doi.org/10.13745/j.esf.sf.2024.6.22

    Fractures are the main seepage channels for oil and gas migration in ultra-deep tight reservoirs, and are crucial for ultra-deep oil and gas exploration and development. Ultra-deep tight reservoirs have highly complex petrophysical characteristics under high-temperature, high-pressure environments, resulting in ambiguous and multi-solution well log responses pertaining to fractures. To solve this problem, we proposes a deep kernel method (DKM) for fracture identification in ultra-deep tight sandstones. This method employs kernel principal component analysis to extract non-linear log features associated with fractures. It utilizes a deep learning cascade structure to extensively explore the log response characteristics across various scales for accurate fracture identification. Furthermore, it employs gradient-free optimization algorithms to automatically determine the optimal model structure and parameters. We conducted a case study in the ultra-deep tight sandstone reservoirs of the Lower Cretaceous Bashijiqike Formation in the Keshen gas field, Tarim Basin, and the proposed method was applied and verified. Through sensitivity analysis of logging responses to fractures, six specific logging curves were chosen for fracture identification. The first three variables, DEN, RD, and RM, correspond to direct measurements from well logging, whereas the latter three, RSD, nT1, and nT2, are reconstructed curves specifically developed to enhance the detection of fracture-related information. This distinction effectively clarifies the differences in logging parameters between fractured and non-fractured zones. A comparative analysis between the fracture identification results and the core fracture descriptions demonstrated the accuracy of the deep kernel method in identifying fractures within ultra-deep tight sandstone formations. This method achieved an accuracy improvement of over 5% compared to the conventional multi-kernel support vector machine method, thus exhibiting robust applicability for single-well fracture identification.