Study on the effect of submerged plants on the stability of karst carbon sink

Caiyun SUN, Bingqing ZHENG, Jun LI, Hongming FU, Rongqing SUN, Honghao LIU, Zuying LIAO, Hongsheng JIANG, Zhenbin WU, Shibin XIA, Pei WANG

PDF(2120 KB)
PDF(2120 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5) : 430-439. DOI: 10.13745/j.esf.sf.2024.2.9

Study on the effect of submerged plants on the stability of karst carbon sink

Author information +
History +

Abstract

Karst carbon sinks are an important means of achieving carbon neutrality, and their stability is a key scientific issue that needs to be addressed. Approximately 45% of annual photosynthesis on Earth occurs in aquatic environments, yet how submerged plants in karst areas affect the stability of karst carbon sinks remains unknown. This study focused on submerged plants in three karst rivers. We employed quadrat sampling, pH-drift technology, and elemental stoichiometry to qualitatively and quantitatively examine the effects of submerged plants on the stability of karst carbon sinks. Our results showed that there were 8, 5, and 7 species of submerged plants in the ZDR, CTR, and HXR, respectively. The Shannon-Wiener diversity index and Simpson dominance index ranked as ZDR>HXR>CTR. In the three karst rivers, Vallisneria natans, Ottelia acuminata, Potamogeton wrightii, and Hydrilla verticillata were the dominant species, all of which had the ability to utilize $\mathrm{HCO}_{3}^{-}$. The annual carbon sequestration rates of submerged plants in the ZDR, HXR, and CTR were 8.56×103 g·m-2·a-1, 4.83×103 g·m-2·a-1, and 3.88×103 g·m-2·a-1, respectively, with an average of 5.76×103 g·m-2·a-1, which are 37.65 and 40.56 times higher than those of grasslands and man-made forests, respectively. The higher the diversity of submerged plants in rivers, the higher the carbon sequestration. Overall, submerged plants play a crucial carbon pump role in karst aquatic ecosystems, thereby enhancing the stability of karst carbon sink.

Key words

karst carbon sink / carbon sequestration by submerged plants / plant diversity / dominant species of plants / river types

Cite this article

Download Citations
Caiyun SUN , Bingqing ZHENG , Jun LI , et al . Study on the effect of submerged plants on the stability of karst carbon sink. Earth Science Frontiers. 2024, 31(5): 430-439 https://doi.org/10.13745/j.esf.sf.2024.2.9

References

[1]
袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1): 1-6.
[2]
LARASON C. An unsung carbon sink[J]. Science, 2011, 334: 886-887.
[3]
章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368-371.
[4]
CAO J H, WU X, HUANG F, et al. Global significance of the carbon cycle in the Karst dynamic system: evidence from geological and ecological processes[J]. China Geology, 2018, 1(1): 17-27.
[5]
FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296.
[6]
CURL R L. Carbon shifted but not sequestered[J]. Science, 2012, 335(6069): 655.
[7]
HORWATH W R. The Phanerozoic carbon cycle: CO2 and O2[J]. Vadose Zone Journal, 2006, 5(4): 1155-1156.
[8]
黄奇波. 北方半干旱岩溶区岩溶碳汇过程及效应研究[D]. 武汉: 中国地质大学(武汉), 2019.
[9]
姚锐. 中国岩石风化对大气CO2的汇效应研究[D]. 长沙: 中南大学, 2003.
[10]
BERNER R A. The long-term carbon cycle, fossil fuels and atmospheric composition[J]. Nature, 2003, 426(6964): 323-326.
[11]
BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
[12]
LIU Z H. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(2/3): 95-102.
[13]
YANG M X, LIU Z H, SUN H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73: 132-141.
[14]
CHEN B, YANG R, LIU Z H, et al. Coupled control of land uses and aquatic biological processes on the diurnal hydrochemical variations in the five ponds at the Shawan Karst Test Site, China: implications for the carbonate weathering-related carbon sink[J]. Chemical Geology, 2017, 456: 58-71.
[15]
WANG P, HU G, CAO J H. Stable carbon isotopic composition of submerged plants living in Karst water and its eco-environmental importance[J]. Aquatic Botany, 2017, 140: 78-83.
[16]
WANG P, HU Q J, YANG H, et al. Preliminary study on the utilization of Ca2+ and $\mathrm{HCO}_{3}^{-}$ in Karst water by different sources of Chlorella vulgaris[J]. Carbonates and Evaporites, 2014, 29(2): 203-210.
[17]
FARQUHAR G D, LLOYD J, TAYLOR J A, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2[J]. Nature, 1993, 363: 439-443.
[18]
CIAIS P, DENNING A S, TANS P P, et al. A three-dimensional synthesis study of δ18O in atmospheric CO2: 1.Surface fluxes[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D5): 5857-5872.
[19]
FANG L, WU Y Y. Bicarbonate uptake experiment show potential Karst carbon sinks transformation into carbon sequestration by terrestrial higher plants[J]. Journal of Plant Interactions, 2022, 17(1): 419-426.
[20]
SERRANO O, GÓMEZ-LÓPEZ D I, SÁNCHEZ-VALENCIA L, et al. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean[J]. Scientific Reports, 2021, 11(1): 11067.
[21]
HAMILTON S E, FRIESS D A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012[J]. Nature Climate Change, 2018, 8: 240-244.
[22]
BAI Y F, COTRUFO M F. Grassland soil carbon sequestration: current understanding, challenges, and solutions[J]. Science, 2022, 377(6606): 603-608.
[23]
BELLASSEN V, LUYSSAERT S. Carbon sequestration: managing forests in uncertain times[J]. Nature, 2014, 506(7487): 153-155.
[24]
FERNÁNDEZ P A, HURD C L, ROLEDA M Y. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH[J]. Journal of Phycology, 2014, 50(6): 998-1008.
[25]
NAEEM S, HÅKANSSON K, LAWTON J H, et al. Biodiversity and plant productivity in a model assemblage of plant species[J]. Oikos, 1996, 76(2): 259.
[26]
MITTELBACH G G, STEINER C F, SCHEINER S M, et al. What is the observed relationship between species richness and productivity?[J]. Ecology, 2001, 82(9): 2381.
[27]
SONKOLY J, KELEMEN A, VALKÓ O, et al. Both mass ratio effects and community diversity drive biomass production in a grassland experiment[J]. Scientific Reports, 2019, 9(1): 1848.
[28]
AUGUSTO L, BOČA A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon[J]. Nature Communications, 2022, 13(1): 1097.
[29]
CHEN X L, TAYLOR A R, REICH P B, et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual[J]. Nature, 2023, 618(7963): 94-101.
[30]
YANG Y, TILMAN D, FUREY G, et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity[J]. Nature Communications, 2019, 10(1): 718.
[31]
LI Q, SHI X Y, ZHAO Z Q, et al. Ecological restoration in the source region of Lancang River: based on the relationship of plant diversity, stability and environmental factors[J]. Ecological Engineering, 2022, 180: 106649.
[32]
PIELOU E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13: 131-144.
[33]
LUKÁCS B A, SRAMKÓ G, MOLNÁR V A. Plant diversity and conservation value of continental temporary pools[J]. Biological Conservation, 2013, 158: 393-400.
[34]
JIANG H S, JIN Q, LI P P, et al. Different mechanisms of bicarbonate use affect carbon isotope composition in Ottelia guayangensis and Vallisneria denseserrulata in a Karst stream[J]. Aquatic Botany, 2021, 168: 103310.
[35]
肖月娥, 陈开宁, 戴新宾, 等. 太湖两种大型沉水植物无机碳利用效率差异及其机理[J]. 植物生态学报, 2007, 31(3): 490-496.
[36]
RAVEN J A. Exogenous inorganic carbon sources in plant photosynthesis[J]. Biological Reviews, 1970, 45(2): 167-220.
[37]
BLACK M A, MABERLY S C, SPENCE D H N. Resistances to carbon dioxide fixation in four submerged freshwater macrophytes[J]. New Phytologist, 1981, 89(4): 557-568.
[38]
SMITH F A, WALKER N A. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and $\mathrm{HCO}_{3}^{-}$ and to carbon isotopic discrimination[J]. New Phytologist, 1980, 86(3): 245-259.
[39]
刘玲玲. 三种沉水植物无机碳利用机制研究[D]. 武汉: 华中师范大学, 2011.
[40]
KLAVSEN S K, MADSEN T V, MABERLY S C. Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review[J]. Photosynthesis Research, 2011, 109(1/2/3): 269-279.
[41]
RASCIO N. The underwater life of secondarily aquatic plants: some problems and solutions[J]. Critical Reviews in Plant Sciences, 2002, 21(4): 401-427.
[42]
ZHANG Y Z, YIN L Y, JIANG H S, et al. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)[J]. Photosynthesis Research, 2014, 121(2/3): 285-297.
[43]
POSCHENRIEDER C, FERNÁNDEZ J A, RUBIO L, et al. Transport and use of bicarbonate in plants: current knowledge and challenges ahead[J]. International Journal of Molecular Sciences, 2018, 19(5): 1352.
[44]
熊志斌, 王万海, 玉屏, 等. 板寨地下河大型水生植物调查及其固碳评价[J]. 热带地理, 2018, 38(4): 557-564.
[45]
CHAPIN F S III, MATSON P A, VITOUSEK P M. Carbon inputs to ecosystems[M]//Principles of terrestrial ecosystem ecology. New York: Springer, 2011: 123-156.
[46]
余俊琪, 白冰, 李光超, 等. 岩溶地下水补给河流沉积物理化性质及有机碳来源解析[J]. 水生生物学报, 2022, 46(12): 1900-1908.
[47]
LOREAU M, HECTOR A. Partitioning selection and complementarity in biodiversity experiments[J]. Nature, 2001, 412(6842): 72-76.
[48]
ROSCHER C, TEMPERTON V M, SCHERER-LORENZEN M, et al. Overyielding in experimental grassland communities-irrespective of species pool or spatial scale[J]. Ecology Letters, 2005, 8(4): 419-429.
[49]
BESSLER H, TEMPERTON V M, ROSCHER C, et al. Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs[J]. Ecology, 2009, 90(6): 1520-1530.
[50]
ZHOU Z, SUN O J, HUANG J, et al. Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem[J]. Functional Ecology, 2006, 20(5): 753-762.
[51]
ZHANG J, EKBLAD A, SIGURDSSON B D, et al. The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-Arctic grassland[J]. Soil Biology and Biochemistry, 2020, 147: 107826.
[52]
LI B B, GAO G Y, LUO Y Q, et al. Carbon stock and sequestration of planted and natural forests along climate gradient in water-limited area: a synthesis in the China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2023, 333: 109419.
[53]
JOHNSON D, VACHON J, BRITTON A J, et al. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs[J]. The New Phytologist, 2011, 190(3): 740-749.
[54]
WILSEY B J, POLLEY H W. Reductions in grassland species evenness increase dicot seedling invasion and spittle bug infestation[J]. Ecology Letters, 2002, 5(5): 676-684.
[55]
KIRWAN L, LÜSCHER A, SEBASTIÀ M T, et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites[J]. Journal of Ecology, 2007, 95(3): 530-539.
[56]
NIJS I, ROY J. How important are species richness, species evenness and interspecific differences to productivity? A mathematical model[J]. Oikos, 2000, 88(1): 57-66.
[57]
MULDER C P H, BAZELEY-WHITE E, DIMITRAKOPOULOS P G, et al. Species evenness and productivity in experimental plant communities[J]. Oikos, 2004, 107(1): 50-63.
[58]
HILLEBRAND H, BENNETT D M, CADOTTE M W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes[J]. Ecology, 2008, 89(6): 1510-1520.

Comments

PDF(2120 KB)

Accesses

Citation

Detail

Sections
Recommended

/