Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace

Biaobiao ZHU, Wei CAO, Pengpeng YU, Qianlong ZHANG, Lanxuan GUO, Guiqiang YUAN, Feng HAN, Hanyu WANG, Yongzhang ZHOU

PDF(11073 KB)
PDF(11073 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 73-86. DOI: 10.13745/j.esf.sf.2024.5.10

Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace

Author information +
History +

Abstract

To investigate the current status, hotspots, and frontiers of big data and artificial intelligence research in the field of geology, this study conducts literature screening of relevant research publications between 2000-2022 using China National Knowledge Infrastructure (CNKI) and Web of Science (WoS) core databases. A total of 3600 Chinese and 1803 English articles are collected, and community structure analysis software CiteSpace is used for visual analysis of cooperation authors, research countries/institutions, keyword clustering, and keyword spatiotemporal distribution maps. Furthermore, a stochastic frontier analysis correction is conducted on publications by international top-tier geoscience journals (comprehensive impact factor ≥10) between 2021-2022. The global cumulative publication volume in this research field had surged in the past decade, led by Asian countries represented by China and European/American countries represented by the United States, with China and the United States showing no significant differences, and the betweenness centrality measures generally higher for European/American countries than for Asian countries. In China, research collaborations were mostly among domestic institutions and relatively rare with foreign research institutions, whilst the opposite was true in foreign countries. The research hotspots in this field were geological disaster prevention and control, earthquake interpretation, petroleum and natural gas exploration, and solid mineral resource prediction using machine learning and knowledge graphs. Research frontiers included significant geological events during Earth’s evolution, global climate change, polar and marine geology, digital geological modeling and quantitative analysis, earthquake prediction, and accurate assessment of geological disaster susceptibility by means of deep learning, integrated learning, and intelligent platform.

Key words

geological big data / artificial intelligence / knowledge graph / CiteSpace / community discovery / visualization

Cite this article

Download Citations
Biaobiao ZHU , Wei CAO , Pengpeng YU , et al . Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace. Earth Science Frontiers. 2024, 31(4): 73-86 https://doi.org/10.13745/j.esf.sf.2024.5.10

References

[1]
CAWOOD P A, CHOWDHURY P, MULDER J A, et al. Secular evolution of continents and the earth system[J]. Reviews of Geophysics, 2022, 60(4): e2022RG000789.
[2]
WALTER L P. Economic geology, principles and practice: metals, minerals, coal and hydrocarbons-introduction to formation and sustainable exploitation of mineral deposits[J]. Mineralogy and Petrology, 2021, 115(4): 487-488.
[3]
董树文, 陈宣华, 史静, 等. 20世纪地质科学学科体系的发展与演变: 根据地质论文统计分析[J]. 地质论评, 2005, 51(3): 275-287, 354.
[4]
万渝生. 最古老陆壳是如何形成的?[J]. 地球科学, 2022, 47(10): 3776-3778.
[5]
ZHU R X, HOU Z Q, GUO Z T, et al. Summary of “the past, present and future of the habitable Earth: development strategy of Earth science”[J]. Chinese Science Bulletin, 2021, 66(35): 4485-4490.
[6]
成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25.
[7]
张旗, 焦守涛, 卢欣祥. 论地质研究中的因果关系和相关关系: 大数据研究的启示[J]. 岩石学报, 2018, 34(2): 275-280.
[8]
罗建民, 张旗. 大数据开创地学研究新途径: 查明相关关系, 增强研究可行性[J]. 地学前缘, 2019, 26(4): 6-12.
[9]
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
[10]
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年:大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777.
[11]
李灿锋, 刘达, 周德坤, 等. 人工智能在地质领域的应用与展望[J]. 矿物岩石地球化学通报, 2022, 41(3): 668-677.
[12]
翟明国, 杨树锋, 陈宁华, 等. 大数据时代: 地质学的挑战与机遇[J]. 中国科学院院刊, 2018, 33(8): 825-831.
[13]
左仁广, 彭勇, 李童, 等. 基于深度学习的地质找矿大数据挖掘与集成的挑战[J]. 地球科学, 2021, 46(1): 350-358.
[14]
周永章, 陈川, 张旗, 等. 地质大数据分析的若干工具与应用[J]. 大地构造与成矿学, 2020, 44(2): 173-182.
[15]
HAN F, DENG Y R, LIU Q Y, et al. Construction and application of the knowledge graph method in management of soil pollution in contaminated sites:a case study in South China[J]. Journal of Environmental Management, 2022, 319: 115685.
[16]
周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究[J]. 中国科学: 地球科学, 2021, 51(7): 1070-1079.
[17]
CHEN C M. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.
[18]
LIU X C, ZHAO S, TAN L L, et al. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis[J]. Biosensors and Bioelectronics, 2022, 201: 113932.
[19]
ZUO Z L, CHENG J H, GUO H X, et al. Knowledge mapping of research on strategic mineral resource security:a visual analysis using CiteSpace[J]. Resources Policy, 2021, 74: 102372.
[20]
CHEN W W, XING J H. Global research on submarine landslides, 2001-2020[J]. Frontiers in Earth Science, 2023, 11: 982482.
[21]
郭永丽, 章程, 吴庆, 等. 基于文献计量学分析岩溶水文地质学研究热点[J]. 中国岩溶, 2020, 39(6): 817-828.
[22]
王广才, 王焰新, 刘菲, 等. 基于文献计量学分析水文地球化学研究进展及趋势[J]. 地学前缘, 2022, 29(3): 25-36.
[23]
刘娅楠, 刘森, 贾超, 等. 基于文献计量学的深远海地质研究分析与展望[J]. 海洋地质前沿, 2021, 37(12): 88-95.
[24]
贺炬翔, 张前龙, 许娅婷, 等. 钦杭成矿带研究进展: 基于CiteSpace社区发现结果分析[J]. 地质论评, 2023, 69(5): 1919-1927.
[25]
盛强, 郑建明, 刘江山, 等. 基于CiteSpace的内表面缺陷检测研究进展与趋势[J]. 光谱学与光谱分析, 2023, 43(1): 9-15.
[26]
任利强, 郭强, 王海鹏, 等. 基于CiteSpace的人工智能文献大数据可视化分析[J]. 计算机系统应用, 2018, 27(6): 18-26.
[27]
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253.
[28]
CHEN G X, CHENG Q M, LYONS T W, et al. Reconstructing Earth’s atmospheric oxygenation history using machine learning[J]. Nature Communications, 2022, 13(1): 5862.
[29]
GHORBANZADEH O, CRIVELLARI A, GHAMISI P, et al. A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan)[J]. Scientific Reports, 2021, 11(1): 14629.
[30]
ROUET-LEDUC B, JOLIVET R, DALAISON M, et al. Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning[J]. Nature Communications, 2021, 12: 6480.
[31]
LI L, AITKEN A R A, LINDSAY M D, et al. Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks[J]. Nature Geoscience, 2022, 15: 645-650.

Comments

PDF(11073 KB)

Accesses

Citation

Detail

Sections
Recommended

/