Mesozoic superposed orogenic system in eastern China

Jishun REN, Jianhui LIU, Junbin ZHU

PDF(14146 KB)
PDF(14146 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1) : 142-153. DOI: 10.13745/j.esf.sf.2023.7.15

Mesozoic superposed orogenic system in eastern China

Author information +
History +

Abstract

The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China. The resulted tectonic belts are neither products of the third stage of crustal evolution, as proposed by Chen Guoda, nor intracontinental (or intraplate) orogenic belts generated by intraplate dynamics, as argued by some scholars—rather, they are superposed orogenic belts created on the preformed continental crust in eastern China due to Mosozoic Paleo-Pacific dynamic system. In the past, these orogenic belts were called the peri-Pacific continent-marginal reactivated belts of eastern China. In the Mesozoic, under the effect of Paleo-Pacific dynamic system, the East Asia margin orogenic system formed along Northeast Russia-Sikhote Alin (Russia)-Japan-Ryukyu-Taiwan (China)-Palawan (Philippines) regions, while simultaneously the Mesozoic superposed orogenic system formed in the pre-existing continental crust in eastern China adjacent to the East Asia continental margin. The two orogenic systems, both driven by Mesozoic Paleo-Pacific dynamic system, developed synchronously to form the giant Mesozoic orogenic system in the Pacific tectonic domain in eastern Asia, radically changing the pre-Indosian tectonic framework of eastern Asia.

Key words

superposed orogenic belt / Indosinian orogenic cycle / Yanshanian orogenic cycle / Mesozoic superposed orogenic system of eastern China / Pacific tectonic domain

Cite this article

Download Citations
Jishun REN , Jianhui LIU , Junbin ZHU. Mesozoic superposed orogenic system in eastern China. Earth Science Frontiers. 2024, 31(1): 142-153 https://doi.org/10.13745/j.esf.sf.2023.7.15

References

[1]
WONG W H. The Mesozoic orogenic movement in eastern China[J]. Bulletin of the Geological Society of China, 1929, 8(1): 33-44.
[2]
HUANGT K. On major tectonic forms of China[J]. Geological Memoirs, 1945, 20: 165.
[3]
陈国达. 中国地台“活化区”的实例并着重讨论“华夏古陆”问题[J]. 地质学报, 1956, 36(3): 239-271.
[4]
陈国达. 地壳运动转化递进说: 论地壳发展的一般规律[J]. 地质学报, 1959, 39(3): 279-291.
[5]
任纪舜, 姜春发, 张正坤, 等. 中国大地构造及其演化[M]. 北京: 科学出版社, 1980: 1-124.
[6]
任纪舜, 陈廷愚, 牛宝贵, 等. 中国东部大陆岩石圈的构造演化与成矿[M]. 北京: 科学出版社, 1990: 1-205.
[7]
任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999, 6(3): 85-93.
[8]
任纪舜, 王作勋, 陈炳蔚, 等. 从全球看中国大地构造: 中国及邻区大地构造图说明书[M]. 北京: 地质出版社, 1999: 1-50.
[9]
DONG Y P, LIU X M, NEUBAUER F, et al. Timing of Paleozoic amalgamation between the North China and South China blocks[J]. Tectonophysics, 2013, 586: 173-191.
[10]
ZHU J B, REN J S. Carboniferous-Permian stratigraphy and sedimentary environment of southeastern Inner Mongolia, China: constraints on final closure of the Paleo-Asian Ocean[J]. Acta Geologia Sinica (English Edition), 2017, 91(3): 832-856.
[11]
任纪舜, 张正坤, 牛宝贵. 论秦岭造山带: 中朝与扬子陆块的拼合过程[M]. 西安: 西北大学出版社, 1991: 99-110.
[12]
任纪舜, 朱俊宾, 李崇, 等. 秦岭造山带是印支碰撞造山带吗?[J]. 地球科学, 2019, 44(5): 1476-1486.
[13]
刘鸿允. 中国古地理[M]. 北京: 科学出版社, 1955.
[14]
任纪舜. 中国南部泥盆纪前几个大地构造问题的初步探讨[J]. 地质学报, 1964, 44(4): 418-431.
[15]
王鸿祯. 中国古地理图集[CM]. 北京: 地图出版社, 1985.
[16]
刘宝珺, 许效松, 潘杏南, 等. 中国南方古大陆沉积地壳演化与成矿[M]. 北京: 科学出版社, 1993: 1-236.
[17]
郑和荣, 胡宗全. 中国前中生代构造-岩相古地理图集[CM]. 北京: 地质出版社, 2010: 1-194.
[18]
WONG W H. Crustal movement and igneous activities in eastern China since Mesozoic time[J]. Bulletin of the Geological Society of China, 1927, 6: 9-36.
[19]
翁文灏. 中国东部中生代以来的地壳运动及岩浆活动[M]// 黄汲清, 潘云唐. 翁文灏选集. 北京: 冶金工业出版社, 1989: 205-231.
[20]
李毓尧, 朱森. 湖南宜童艮口之地质及其与南岭造山作用之关系[J]. 中国地质学会志, 1934, 13: 183-196.
[21]
李毓尧, 李捷, 朱森. 宁镇山脉地质[J]. 前中央研究院地质研究所集刊, 1935, 11: 1-387.
[22]
黄汲清, 徐克勤. 江西萍乡煤田之中生代造山运动[J]. 中国地质学会会志, 1937, 16: 177-193.
[23]
ARGAND E. Tectonics of Asia[M]. Translated and edited by CAROZZI A V. New York: Hafner Press, 1924; Division of Macmillan Publishing Co., Inc., 1977: 218.
[24]
程裕淇. 中国区域地质概论[M]. 北京: 地质出版社, 1994: 1-517.
[25]
郭文魁. 1∶4000000中国内生金属成矿图说明书[M]. 北京: 地质出版社, 1987: 72.
[26]
陈毓川, 常印佛, 裴荣富, 等. 中国成矿体系与区域成矿评价[M]. 北京: 地质出版社, 2007: 1-962.
[27]
REN J S, NIU B G, WANG J, et al. Advances in research of Asian geology: a summary of 1∶5 M International Geological Map of Asia project[J]. Journal of Asian Earth Sciences, 2013, 72: 3-11.
[28]
任纪舜, 牛宝贵, 王军, 等. 1∶500万国际亚洲地质图[CM]. 北京: 地质出版社, 2013.
[29]
姜杨, 邢光福, 袁强, 等. 浙江舟山群岛首次发现二叠纪变质岩[J]. 地质通报, 2016, 35(7): 1046-1055.
[30]
ZHANGH F, GOLDSTEIN S L, ZHOU X H, et al. Comprehensive refertilization of lithospheric mantle beneath the North China Craton: further Os-Sr-Nd isotopic constrains[J]. Journal of the Geological Society, London, 2009, 166: 249-259.
[31]
WILDES A, ZHOU X H, NEMCHIN A A, et al. Mesozoic crust-mantle interaction beneath the North China Craton: a consequence of the dispersal of Gondwanaland and accretion of Asia[J]. Geology, 2003, 31: 817-820.
[32]
路凤香, 郑建平, 李伍平, 等. 中国东部显生宙地幔演化的主要样式: “蘑菇云”模型[J]. 地学前缘, 2000, 7(1): 97-107.
[33]
周新华. 中国东部中、新生代岩石圈转型与减薄研究若干问题[J]. 地学前缘, 2006, 13(2): 50-64.
[34]
周新华. 华北中—新生代大陆岩石圈转型的研究现状与方向: 兼评 “岩石圈减薄” 和 “克拉通破坏”[J]. 高校地质学报, 2009, 15(1): 1-18.
[35]
冯锐. 中国地壳厚度及上地幔密度分布(三维反演结果)[J]. 地震学报, 1985, 7(2): 143-157.
[36]
REN J S. The continental tectonics of China[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(3/4/5): 197-204.
[37]
任纪舜, 徐芹芹, 赵磊, 等. 从地槽-地台说、板块构造说到地球系统多圈层构造观[J]. 地质论评, 2017, 63(5): 1133-1140.
[38]
任纪舜, 徐芹芹, 赵磊, 等. 寻找消失的大陆[J]. 地质论评, 2015, 61(5): 969-989.
[39]
ICHIKAWA K, MIZUTANI S, HARA I, et al. Pre-Cretaceous terranes of Japan[M]//Pre-Jurassic evolution of eastern Asia. Osaka: IGCP, 1990: 1-413.
[40]
SOKOLOVS D, BONDARENKO G Y, KHUDOLEY A K, et al. Tectonic reconstruction of Uda-Murgal arc and Late Jurassic and Early Cretaceous convergent margin of Northeast Asia-Northwest Pacific[J]. Stephen Mueller Special Publication Series, 2009, 4: 273-288.
[41]
PETROVO V, LEONOV Y G, POSPELOV I I, et al. Tectonics of Northern, Central and Eastern Asia: explanatory note to the Tectonic Map of Northern-Central-Eastern Asia and Adjacent Areas at Scale 1∶250000[M]. St. Petershurg: Vsegei Printing House, 2014.
[42]
曹译文, 周喜文, 刘建辉. 东海大衢岛高压麻粒岩的发现及其构造指示意义[J]. 吉林大学学报(地球科学版), 2022, 53(2): 475-490.
[43]
ISOZAKI Y, AOKI K, NAKAMA T, et al. New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands[J]. Gondwana Research, 2010, 18: 82-105.
[44]
FAUREM, MONIE P, FABBRI O. Microtectonics and 39Ar-40Ar dating of high pressure metamorphic rocks of the South Ryukyu Arc and their bearings on the pre-Eocene geodynamic evolution of eastern Asia[J]. Tectonophysics, 1988, 156: 133-143.
[45]
YUIT F, OKAMOTO K, USUKI T, et al. Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China: evidence from zircon SHRIMP dating[J]. International Geology Review, 2009, 51(4): 304-328.
[46]
YUIT F, CHU H T, SUGA K, et al. Subduction-related 200 Ma Talun metagranite, SW Taiwan: an age constraint for palaeo-Pacific plate subduction beneath South China Block during the Mesozoic[J]. International Geology Review, 2017, 59(3): 333-346.
[47]
SHAOW Y, CHUNG S L, CHEN W S, et al. Old continental zircons from a young oceanic arc, eastern Taiwan: implications for Luzon subduction initiation and Asian accretionary orogeny[J]. Geology, 2015, 43(6): 479-482.
[48]
KNITTEL U, HUNG C H, YANG T F, et al. Permian arc magmatism in Mindoro, the Philippines: an early Indosinian event in the Palawan Continental Terrane[J]. Tectonophysics, 2010, 493: 113-117.
[49]
FANTAINE H. Note on the Geology of the Calamian Islands, North Palawan, Philippines[J]. ESCAP-CCOP Newsletter, 1979, 6(2): 3-30.
[50]
CHARVET J, FAURE M. Mesozoic orogeny, microblocks and longitudinal leftlateral motions in SW Japan[J]. Annales de la Société Géologique du Nord CIII, 1984, 103, 361-375.
[51]
CHARVET J, FAURE M, CARIDROIT M, et al. Some tectonic and tectogenetic aspects of SW Japan: an alpine-type orogen in an island-arc position[M]//NASU N, KOBAYASHI K, UYEDA S, et al. Formation of the active ocean margins. Tokyo: Terrapub, 1985: 791-817.
[52]
CHARVET J. Late Paleozoic-Mesozoic tectonic evolution of SW Japan: a review: reappraisal of the accretionary orogeny and revalidation of the collisional model[J]. Journal of Asian Earth Sciences, 2013, 72, 88-101.
[53]
JAHN B M. Accretionary orogen and evolution of the Japanese islands-implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan[J]. American Journal of Science, 2010, 310: 1210-1249.
[54]
ISOZAKI Y. A visage of early Paleozoic Japan: geotectonic and paleobiogeographical significance of Greater South China[J]. Island Arc, 2019, 28: e12296.
[55]
CHO D L, TAKAHASHI Y, YI K, et al. SHRIMP U-Pb zircon ages of granite gneiss and paragneiss from Oki-Dogo Island, Southwest Japan, and their tectonic implications[J]. Geophysical Research Abstracts, 2012, 14: EGU2012-1720.
[56]
KIMURA K, HAYASAKA Y, YAMASHITA J, et al. Antiquity and tectonic lineage of Japanese Islands: new discovery of Archean-Paleoproterozoic Complex[J]. Earth and Planetary Science, 2021, 565: 116926.
[57]
PETROV O, PUBELLIER M. Tectonic map of the Arctic (1∶10000000)[M]. St.Petersburg: Vsegei Printing House, 2018.
[58]
任纪舜, 赵磊, 徐芹芹, 等. 中国的全球构造位置和地球动力系统[J]. 地质学报, 2016, 90(9): 2100-2108.

Comments

PDF(14146 KB)

Accesses

Citation

Detail

Sections
Recommended

/