
Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research
Yongzhang ZHOU, Fan XIAO
Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research
This special issue titled “Artificial Intelligence and Big Data Geoscience” consists of 17 papers covering topics such as knowledge graphs, deep learning-based image recognition, machine-readable expression of unstructured geological information, big graph data and community detection, association rule algorithms, 3D geological simulation and mineral prospecting, and the Internet of Things and online monitoring systems. A progressive multi-granularity training deep learning method is proposed for mineral image identification; the model achieves 86.5% accuracy on a commonly used dataset comprising 36 mineral types, increasing the accuracy of mineral identification. Knowledge related to porphyry copper ore in the Qinzhou-Hangzhou mineralization belt, South China, is collected using both primary and literature data sources, and Natural Language Processing (NLP) techniques are used to semantically correlate and reason over the knowledge graph, enabling automated knowledge extraction and reasoning. The association rule algorithm is used to analyze the correlation between trace elements and gold mineralization in major Carlin-type gold deposits in the “Golden Triangle” region of Yunnan-Guizhou-Guangxi provinces, China, and combined with the migration and enrichment law of elements to analyze the genetic mechanism of deposits. By builing a quantitative prospecting indicator method based on association rule algorithm, this study provides new ideas for establishing quantitative prospecting indicators for other types of deposits. In study of machine-readable expression of unstructured geological information and intelligent prediction of mineralization associated anomaly areas in Pangxidong District, western Guangdong, China, unstructured geological information such as stratigraphy, lithology and faults is processed by machine-readable conversion, and two machine learning algorithms—namely, One-Class Support Vector Machine and Auto-Encoder network—are applied to mine the geochemical test data of the stream sediment as well as the comprehensive geological information such as faults and stratigraphy, to extract the features of the mineralizing anomalies, and ultimately realize the intelligent circling of mineralizing anomalous areas. In study of networked monitoring of urban soil pollutants and visualized system based on microservice architecture, a system capable of real-time online monitoring, processing, and analyzing urban soil pollution data to enhance the timeliness of predictions and warnings is developed, where the integrated monitoring and data visualization system is based on the microservices framework Spring Cloud Alibaba. The above mentioned studies provide highly valuable application scenarios and research cases, reflecting to some extent the latest research advances in the field of artificial intelligence and big data geoscience in China, and are worthy of peer attention.
knowledge graph / deep learning / automatic image recognition / unstructured geological information / community detection / big data mining / 3D geological modeling / Internet of Things identifier
[1] |
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018: 1-269.
|
[2] |
翟明国. 大数据定将改变地质: 向读者推荐《地球科学大数据挖掘与机器学习》[J]. 矿物岩石地球化学通报, 2018, 37(6): 1209.
|
[3] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
|
[4] |
周永章, 陈川, 张旗, 等. 地质大数据分析的若干工具与应用[J]. 大地构造与成矿学, 2020, 44(2): 173-182.
|
[5] |
韩枫. 城市土壤污染的知识图谱构建与应用研究[D]. 广州: 中山大学, 2023: 228.
|
[6] |
张前龙, 周永章, 郭兰萱, 等. 找矿知识图谱的智能化应用: 以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15.
|
[7] |
王成彬, 王明果, 王博, 等. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36.
|
[8] |
叶育鑫, 刘家文, 曾婉馨, 等. 基于本体指导的矿产知识图谱构建研究[J]. 地学前缘, 2024, 31(4): 16-25.
|
[9] |
季晓慧, 董雨航, 杨中基, 等. 基于知识图谱多跳推理的中文矿物知识问答方法与系统[J]. 地学前缘, 2024, 31(4): 37-46.
|
[10] |
徐述腾. 基于深度学习的镜下矿石矿物图像自动识别与分类[D]. 广州: 中山大学, 2018: 44.
|
[11] |
万成舟, 季晓慧, 杨眉, 等. 基于渐进多粒度训练深度学习的矿物图像识别[J]. 地学前缘, 2024, 31(4): 112-118.
|
[12] |
王琳, 季晓慧, 杨眉, 等. 基于数据增强和集成学习的矿物图像识别[J]. 地学前缘, 2024, 31(4): 87-94.
|
[13] |
刘烨, 韩雨伯, 朱文瑞. 矿物组分识别与智能解释在不同岩性之间的信息共享与迁移学习[J]. 地学前缘, 2024, 31(4): 95-111.
|
[14] |
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573.
|
[15] |
王堃屹, 周永章. 粤西庞西垌地区非结构化地质信息机器可读表达与致矿异常区域智能预测[J]. 地学前缘, 2024, 31(4): 47-57.
|
[16] |
朱彪彪, 曹伟, 虞鹏鹏, 等. 基于CiteSpace的地质大数据与人工智能研究热点及前沿分析[J]. 地学前缘, 2024, 31(4): 73-86.
|
[17] |
常力恒, 朱月琴, 张戈一, 等. 面向矿产资源信息的空间关联性分析[J]. 岩石学报, 2018, 34(2): 314-318.
|
[18] |
王堃屹, 周永章, 王俊, 等. 推荐系统算法在钦杭成矿带南段文地幅矿床预测中的应用[J]. 地学前缘, 2019, 26(4): 131-137.
|
[19] |
刘心怡, 周永章. 关联规则算法在粤西庞西垌地区元素异常组合研究中的应用[J]. 地学前缘, 2019, 26(4): 126-130.
|
[20] |
曹胜桃, 胡瑞忠, 周永章, 等. 基于大数据关联规则算法的卡林型金矿床元素富集规律及找矿方法研究[J]. 地学前缘, 2024, 31(4): 58-72.
|
[21] |
袁峰, 李晓晖, 田卫东, 等. 三维成矿预测关键问题[J]. 地学前缘, 2024, 31(4): 119-128.
|
[22] |
牛露佳, 石成岳, 王占刚, 等. 三维复杂地质结构模型的InterfaceGrid表达方法[J]. 地学前缘, 2024, 31(4): 129-138.
|
[23] |
王汉雨, 周永章, 许娅婷, 等. 基于微服务架构的城市土壤污染物联网监测及可视化系统研究[J]. 地学前缘, 2024, 31(4): 165-174.
|
[24] |
马建华, 周永章, 刘金锋, 等. 面向地质封存及其泄露风险评价的CO2物联网在线监测[J]. 地学前缘, 2024, 31(4): 139-146.
|
[25] |
杨慧, 范怀伟, 徐晓, 等. 能源资源开发区域碳浓度时空变化及影响因素分析[J]. 地学前缘, 2024, 31(4): 147-164.
|
/
〈 |
|
〉 |