
华北“23·7”强降雨事件对不同埋深地下水的补给机理:以雄安新区为例
The question of whether rainfall can penetrate a thick unsaturated zone to reach the water table has long been a contentious issue in the field of groundwater recharge. The extreme rainfall event that occurred in the North China Plain from July 23rd to 27th, 2023, equivalent to a large-scale infiltration experiment, provided a valuable opportunity to analyze how groundwater recharge is influenced by the depth to the water table. This study focuses on the Baiyangdian region in the Xiong’an New Area, examining the response patterns of groundwater at different depths during this extreme rainfall event, which delivered a cumulative rainfall of 289.2 mm over three days. Data were collected from four automated monitoring wells in the shallow water table area around Baiyangdian and six automated monitoring wells in the deep water table area within Rongcheng County. In the shallow water table area, vertical infiltration reached the water table approximately 16 hours after the onset of the storm, causing the water table to rise by 1.36 to 1.79 meters. In the deep water table area, river water levels rose rapidly after the storm, leading to leakage that formed a groundwater mound. Due to the backwater effect, groundwater levels within 6 km of the Nanjuhe River rose rapidly by 1.38 to 3.67 meters. This study demonstrates that vertical infiltration through the unsaturated zone is the primary source of groundwater recharge in shallow water table areas. In contrast, in deep water table areas near river channels, post-storm river infiltration and the resulting backwater effect are the main sources of groundwater recharge. These findings improve the understanding of groundwater recharge mechanisms at varying depths and provide valuable insights for analyzing water table recovery processes and the effects of ecological water replenishment in the North China Plain and other regions facing groundwater overexploitation.
groundwater recharge / phreatic backwater / ecological water replenishment / thick vadose zone / Baiyangdian Lake
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
于开宁, 廖安然. 基于生态位理论的河北平原地下水开采潜力评价[J]. 地学前缘, 2018, 25(1): 259-266.
|
[6] |
曹国亮. 华北平原地下水系统变化规律研究[D]. 北京: 中国地质大学(北京), 2013.
|
[7] |
|
[8] |
|
[9] |
水利部. 水利部财政部国家发展改革委农业农村部关于印发《华北地区地下水超采综合治理行动方案》的通知[A]. 北京: 水利部, 2019.
|
[10] |
|
[11] |
|
[12] |
康宏志, 陈亮, 郭祺忠, 等. 海绵城市建设地下水补给计算研究进展[J]. 地学前缘, 2019, 26(6): 58-65.
|
[13] |
杨永辉, 郝小华, 曹建生, 等. 太行山山前平原区地下水下降与降水、作物的关系[J]. 生态学杂志, 2001, 20(6): 4-7, 15.
|
[14] |
张光辉, 费宇红, 申建梅, 等. 降水补给地下水过程中包气带变化对入渗的影响[J]. 水利学报, 2007, 38(5): 611-617.
|
[15] |
杨会峰, 白华, 程彦培, 等. 基于氯离子示踪法深厚包气带地区地下水补给特征[J]. 南水北调与水利科技(中英文), 2022, 20(1): 30-39.
|
[16] |
薛禹群, 朱学愚. 地下水动力学[M]. 北京: 地质出版社, 1979.
|
[17] |
周志芳, 王锦国. 地下水动力学[M]. 北京: 科学出版社, 2013.
|
[18] |
张文喆, 王锦国, 徐烁. 河水位连续变化条件下潜水回水范围计算[J]. 水资源保护, 2013, 29(6): 41-43, 48.
|
[19] |
胡立堂, 郭建丽, 张寿全, 等. 永定河生态补水的地下水位动态响应[J]. 水文地质工程地质, 2020, 47(5): 5-11.
|
[20] |
刘家宏, 梅超, 王佳, 等. 北京市门头沟流域“23·7” 特大暴雨洪水过程分析[J]. 中国防汛抗旱, 2023, 33(9): 50-55.
|
[21] |
李海明, 李梦娣, 肖瀚, 等. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178.
|
[22] |
侯国华, 高茂生, 叶思源, 等. 黄河三角洲浅层地下水盐分来源及咸化过程研究[J]. 地学前缘, 2022, 29(3): 145-154.
|
[23] |
水利部.水 利部办公厅关于印发《2019年度华北地区地下水超采综合治理河湖生态补水方案及试点河段后续补水计划》的通知[A]. 北京: 水利部, 2019.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
张蔚榛. 地下水非稳定流计算和地下水资源评价[M]. 武汉: 武汉大学出版社, 2013.
|
[28] |
|
[29] |
|
[30] |
|
/
〈 |
|
〉 |