Characteristics of boron geochemical anomalies and prediction of boron resource potential in China

Qingqing LIU, Xueqiu WANG, Bimin ZHANG, Jian ZHOU, Wei WANG, Hanliang LIU, Dongsheng LIU, Yining ZHOU, Chan CHANG

PDF(3410 KB)
PDF(3410 KB)
Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1) : 50-60. DOI: 10.13745/j.esf.sf.2024.10.35

Characteristics of boron geochemical anomalies and prediction of boron resource potential in China

Author information +
History +

Abstract

Boron (B) is a new strategic mineral widely used in modern high-tech industries. In recent years the exploration of boron mineral resource has received increasing attention as the demand for boron contineous to rise. The overall distribution characteristics of boron in China is very important for boron prospecting. Based on analyses of the 3380 deep soil samples collected by the China Geochemical Baseline (CGB) project, this paper reveals the geochemical and anomaly distribution characteristics of boron in China. We found that the average boron concentration in deep sediments/alluvial soil of China was 46.4 mg/kg, showing a trend of high in the south and low in the north, with contiguous distribution across five geochemical zones: northeastern China and eastern Inner Mongolia (Ⅰ); northwestern China (Ⅱ); northern China (Ⅲ); Qinghai-Tibet (Ⅳ) and southern China (Ⅴ). Taking 70.9 and 52.4 μg/g (cumulative frequency 85%) as the lower anomaly thresholds in the south and the north, respectively, we identified a total of 37 geochemical anomalies, which were classified into ten geochemical provinces and nine individual anomalies. According to the spatial distribution of boron anomalies, combined with the geological background and distribution of boron deposits, we further delineated nine metallogenic prospective areas. We suggest that more efforts should be made to explore boron-rich salt lake deposits, and that hard rock (marine sedimentary) boron deposits should be the next exploration target.

Key words

boron / China Geochemical Baseline / potential mineral resources area / deep soil / geochemical anomalies

Cite this article

Download Citations
Qingqing LIU , Xueqiu WANG , Bimin ZHANG , et al . Characteristics of boron geochemical anomalies and prediction of boron resource potential in China. Earth Science Frontiers. 2025, 32(1): 50-60 https://doi.org/10.13745/j.esf.sf.2024.10.35

References

[1]
全跃. 硼及硼产品研究与进展[M]. 大连: 大连理工大学出版社, 2008.
[2]
王春连, 王九一, 游超, 等. 战略性非金属矿产厘定、 关键应用和供需形势研究[J]. 地球学报, 2022, 43(3): 267-278.
[3]
ZHU M X, ZHOU X R, ZHANG H, et al. International trade evolution and competition prediction of boron ore: based on complex network and link prediction[J]. Resources Policy, 2023, 82: 103542.
[4]
BARTEKOVÁ E, KEMP R. Critical raw material strategies in different world regions[R]. Maastricht: United Nations University, Maastricht Economic and social Research in stitute on Innovation and Technology, 2016.
[5]
王登红. 关键矿产的研究意义、 矿种厘定、 资源属性、 找矿进展、 存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209.
[6]
葛建平, 刘佳琦. 关键矿产战略国际比较: 历史演进与工具选择[J]. 资源科学, 2020, 42(8): 1464-1476.
[7]
李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、 研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13.
[8]
中华人民共和国自然资源部. 中国矿产资源报告[R]. 北京: 地质出版社, 2022.
[9]
林秋婷, 陈晨, 刘海洋. 硼的地球化学性质及其在俯冲带的循环与成矿初探[J]. 岩石学报, 2020, 36(1): 5-12.
[10]
邵世宁, 熊先孝. 中国硼矿主要矿集区及其资源潜力探讨[J]. 化工矿产地质, 2010, 32(2): 65-74.
[11]
WANG G, WANG J S, YU X Y, et al. Innovative method for boron extraction from iron ore containing boron[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(3): 247-256.
[12]
AN J, XUE X X. Life cycle environmental impact assessment of borax and boric acid production in China[J]. Journal of Cleaner Production, 2014, 66: 121-127.
[13]
张福祥, 赵莎, 刘卓, 等. 全球硼矿资源现状与利用趋势[J]. 矿产保护与利用, 2019, 39(6): 142-151.
[14]
DONG M G, XUE X X, SINGH V P, et al. Shielding effectiveness of boron-containing ores in Liaoning province of China against gamma rays and thermal neutrons[J]. Nuclear Science and Techniques, 2018, 29(4): 58.
[15]
王学求, 谢学锦, 张本仁, 等. 地壳全元素探测: 构建 “化学地球”[J]. 地质学报, 2010, 84(6): 854-864.
[16]
王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7-18.
[17]
YAO W S, XIE X J, ZHAO P Z, et al. Global scale geochemical mapping program: contributions from China[J]. Journal of Geochemical Exploration, 2014, 139: 9-20.
[18]
WANG X Q. China geochemical baselines: sampling methodology[J]. Journal of Geochemical Exploration, 2015, 148: 25-39.
[19]
王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480.
[20]
王学求. 透视全球资源与环境, 实施“化学地球”国际大科学计划[J]. 中国地质, 2017, 44(1): 201-202.
[21]
WANG X Q, LIU X M, HAN Z X, et al. Concentration and distribution of mercury in drainage catchment sediment and alluvial soil of China[J]. Journal of Geochemical Exploration, 2015, 154: 32-48.
[22]
WANG X Q, HAN Z X, WANG W, et al. Continental-scale geochemical survey of lead (Pb) in China mainland’s pedosphere: concentration, spatial distribution and influences[J]. Applied Geochemistry, 2019, 100: 55-63.
[23]
LIN X, WANG X Q, ZHOU J, et al. Concentrations, variations and distribution of molybdenum (Mo) in catchment outlet sediments of China: conclusions from the China geochemical baselines project[J]. Applied Geochemistry, 2019, 103: 50-58.
[24]
LIU Q Q, ZHANG B M, ZHAI D X, et al. Continental-scale distribution and source identification of fluorine geochemical provinces in drainage catchment sediment and alluvial soil of China[J]. Journal of Geochemical Exploration, 2020, 214: 106537.
[25]
LIU H L, WANG X Q, ZHANG B M, et al. Concentration and distribution of selenium in soils of China mainland’s, and implications for human health[J]. Journal of Geochemical Exploration, 2021, 220, 106654: 1-14.
[26]
YAN T T, WANG X Q, LIU D S, et al. Continental-scale spatial distribution of chromium (Cr) in China and its relationship with ultramafic-mafic rocks and ophiolitic chromite deposit[J]. Applied Geochemistry, 2021, 126: 104896.
[27]
王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423.
[28]
LIU H L, WANG X Q, ZHANG B M, et al. Concentration and distribution of lithium in catchment sediments of China: conclusions from the China geochemical baselines project[J]. Journal of Geochemical Exploration, 2020, 215: 106540.
[29]
WANG X Q, LIU X M, WANG W. National-scale distribution and its influence factors of calcium concentrations in Chinese soils from the China global baselines project[J]. Journal of Geochemical Exploration, 2022, 233: 106907.
[30]
WANG W, WANG X Q, ZHANG B M, et al. Concentrations and spatial distribution of chlorine in the pedosphere in China: based on the China geochemical baselines project[J]. Journal of Geochemical Exploration, 2022, 242: 107089.
[31]
DARNLEY A G, BJÖRKLUND A, BØLVIKEN B, et al. A global geochemical database for environmental and resource management[R]. Paris: UNESCO Publishing, 1995.
[32]
DEMETRIADES A, OTTESEN R T, LOCUTURA J. Geochemical mapping of western Europe towards the year 2000-pilot project report[R]. Trondheim: Western European Geological Surveys, Geological Survey of Norway, Trondheim, Open File Report, 1990.
[33]
BØLVIKEN B, DEMETRIADES A, HINDEL A, et al. Geochemical mapping of western Europe towards the year 2000 - project proposal[R]. Trondheim: Western European Geological Surveys, Geological Survey of Norway, Trondheim, NGU Report, 1990.
[34]
BÖLVIKEN B, BOGEN J, DEMETRIADES A, et al. Regional geochemical mapping of western Europe towards the year 2000[J]. Journal of Geochemical Exploration, 1996, 56(2): 141-166.
[35]
CHENG H X, SHEN X C, YAN G S, et al. Wide-spaced floodplain sediment sampling covering the whole of China: pilot survey for international geochemical mapping[M]// XIE X J. Proceedings of the 30th International Geological Congress: Geochemistry, 19: 89-109.
[36]
OTTESEN R T, BOGEN J, BØLVIKEN B, et al. Overbank sediment: a representative sample medium for regional geochemical mapping[J]. Journal of Geochemical Exploration, 1989, 32(1/2/3): 257-277.
[37]
XIE X J, CHENG H X. The suitability of floodplain sediment as a global sampling medium: evidence from China[J]. Journal of Geochemical Exploration, 1997, 58(1): 51-62.
[38]
SALMINEN R, TARVAINEN T. The problem of defining geochemical baselines: a case study of selected elements and geological materials in Finland[J]. Journal of Geochemical Exploration, 1997, 60(1): 91-98.
[39]
CARITAT P D, COOPER M, LECH M, et al. National geochemical survey of Australia: sample preparation manual[J]. Geoscience Australia, 2009, 8: 1-28.
[40]
DE CARITAT P, REIMANN C, SMITH D B, et al. Chemical elements in the environment: multi-element geochemical datasets from continental- to national-scale surveys on four continents[J]. Applied Geochemistry, 2018, 89: 150-159.
[41]
张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42.
[42]
鄢明才. 中国东部地壳与岩石的化学组成[M]. 北京: 科学出版社, 1997.
[43]
YAN M C. The chemical compositions of the continental crust and rocks in the eastern part of China[M]. Beijing: Science Press, 2005.
[44]
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
[45]
鄢明才, 顾铁新, 迟清华, 等. 中国土壤化学元素丰度与表生地球化学特征[J]. 物探与化探, 1997, 21(3): 161-167.
[46]
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[47]
魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4): 12-19, 94.
[48]
SHACKLETTE H T, BOERNGEN J G. Element concentrations in soils and other surficial materials of the conterminous United States: an account of the concentrations of 50 chemical elements in samples of soils and other regoliths[M]. Washington: Government Printing House, 1984.
[49]
BOWEN H J M. Environmental chemistry of the elements[M]. London: Academic Press, 1979.
[50]
谢学锦, 刘大文, 向运川, 等. 地球化学块体: 概念和方法学的发展[J]. 中国地质, 2002, 29(3): 225-233.
[51]
庄稼成. 三江源气象水文干旱时空演变特征与归因研究[D]. 南京: 南京信息工程大学, 2024.
[52]
LIU M L, GUO Q H, LUO L, et al. Environmental impacts of geochermal waters with extremely high boron concentrations: insight from a case study in Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2020, 397, 106887: 1-12.
[53]
佟伟, 廖志杰, 刘时彬, 等. 西藏温泉志[M]. 北京: 科学出版社, 2000.
[54]
王莹, 熊先孝. 中国硼矿床成矿规律概要与找矿远景分析[J]. 矿床地质, 2022, 41(5): 939-951.

Comments

PDF(3410 KB)

Accesses

Citation

Detail

Sections
Recommended

/