Geochemical exploration of blind sulfide-rich ore deposits: Sulphur gas geochemical detection

Qiang WANG, Zhizhong CHENG, Tingjie YAN, Chenggui LIN, Zezhong DU, Huixiang YUAN, Xiaolei LI

PDF(6358 KB)
PDF(6358 KB)
Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1) : 302-321. DOI: 10.13745/j.esf.sf.2024.10.31

Geochemical exploration of blind sulfide-rich ore deposits: Sulphur gas geochemical detection

Author information +
History +

Abstract

Sulfur gas geochemical detection has long been applied in mineral exploration. However, this method has not been widely used due to the high activity and reactivity of sulfur gases, low reproducibility of test results, and high cost. Today, as mineral exploration shifts from near-surface, easy-to-discover ore deposits to deep concealed ones, and with the successful development of portable, economical, efficient, real-time gas detection systems, a new opportunity arises to improve and promote this method. This paper reviews research progress, challenges, and future development directions regarding to concealed sulfide-rich deposits. Equilibrium thermodynamic models, simulation experiments on weathering and oxidation of sulfide minerals, and field studies suggest that gas geochemical anomalies of concealed sulfide-rich ore deposits are influenced by their mineral compositions, cover characteristics, geochemical landscapes, and physicochemical characteristics of sulfur gases. In regolith-covered terrains, portable multi-component gas analyzers can be used to obtain on-site, real-time measurements of soil gases including sulfur gases; more importantly, sulfur gas anomalies in soils tend to appear directly above the blind deposits if the blind deposits are covered by regolith directly. In bedrock outcrops, sulfur gases can be measured by rock thermal desorption; and the spatial relationship between the blind deposits and sulfur gas anomalies is primarily influenced by the development of permeable channels such as faults and fractures. Case studies indicate the sulfur gas geochemical detection is effective for mineral exploration in semi-arid and arid terrains and has great potential for mineral exploration in semi-humid and humid terrains. Future research directions should focus on three aspects: the formation and evolutionary process of sulfur gases in surface environment to ascertain the dominant controlling factors; the effectiveness of geochemical detection of sulphur-containing gases under different geochemical landscapes, especially in semi-humid and humid terrains; and the miniaturization and intelligent upgrading of portable soil gas detection equipment.

Key words

geochemical exploration / covered terrain / blind deposits / soil gas / sulfur gases

Cite this article

Download Citations
Qiang WANG , Zhizhong CHENG , Tingjie YAN , et al . Geochemical exploration of blind sulfide-rich ore deposits: Sulphur gas geochemical detection. Earth Science Frontiers. 2025, 32(1): 302-321 https://doi.org/10.13745/j.esf.sf.2024.10.31

References

[1]
GOVETT G J S. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely spaced surface soil samples[J]. Journal of Geochemical Exploration, 1976, 6(1/2): 359-382.
[2]
HAMILTON S. Electrochemical mass-transport in overburden: a new model to account for the formation of selective leach geochemical anomalies in glacial terrain[J]. Journal of Geochemical Exploration, 1998, 63(3): 155-172.
[3]
WANG X Q, CHENG Z Z, LU Y X, et al. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997, 58(1): 63-72.
[4]
WANG X Q, ZHANG B M, LIN X, et al. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016, 73: 417-431.
[5]
SMEE B W. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments[J]. Journal of Geochemical Exploration, 1998, 61(1-3): 149-172.
[6]
谢学锦, 王学求. 深穿透勘查地球化学[J]. 物探与化探, 1998, 22(3): 166-169.
[7]
CAMERON E M, HAMILTON S M, LEYBOURNE M I, et al. Finding deeply buried deposits using geochemistry[J]. Geochemistry: Exploration, Environment, Analysis, 2004, 4(1): 7-32.
[8]
CAO J J. Migration mechanisms of gold nanoparticles explored in geogas of the Hetai ore district, Southern China[J]. Geochemical Journal, 2011, 45(3): e9-e13.
[9]
ANAND R, LINTERN M, NOBLE R, et al. Geochemical dispersion through transported cover in regolith-dominated terrains: toward an understanding of process[M]// KELLEY K D, GOLDEN H C. Building exploration capability for the 21st century. Littleton: Society of Economic Geologists Special Publication, 2014: 97-126.
[10]
YE R, ZHANG B M, WANG Y. Mechanism of the migration of gold in desert regolith cover over a concealed gold deposit[J]. Geochemistry: Exploration, Environment, Analysis, 2015, 15(1): 62-71.
[11]
ZHANG B M, HAN Z X, WANG X Q, et al. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and their significance[J]. Minerals, 2019, 9: 414.
[12]
GLEBOVSKAYA U S, GLEBOVSKI S S. The possibility of the application of gas surveys in prospecting for sulphide ore deposits[J]. Voprosy Rudnoy Geofiziki, 1960, 1: 48-56.
[13]
MCCARTHY J H. Mercury vapor and other volatile components in the air as guides to ore deposits[J]. Journal of Geochemical Exploration, 1972, 1(2): 143-162.
[14]
HINKLE M E, HARMS T F. CS2 and COS in soil gases of the Roosevelt Hot Springs known geothermal resource area, Beaver County, Utah[J]. Journal of Research of the U.S. Geological Survey, 1978, 6: 571-578.
[15]
HALE M, MOON C J. Geochemical expressions at surface of mineralization concealed beneath glacial till at Keel, Eire[C]// DAVENPORT P H. Prospecting in areas of glaciated terrain-1982. St. John’s Newfoundland: Canadian Institute Mining Metallurgy, 1982: 228-239.
[16]
LOVELL J S, HALE M, WEBB J S. Soil air carbon dioxide and oxygen measurements as a guide to concealed mineralization in semi-arid and arid regions[J]. Journal of Geochemical Exploration, 1983, 19(1-3): 305-317.
[17]
HINKLE M E. Using volatile constituents of soils and soil gases to determine the presence of copper-zinc ore bodies at Johnson Camp, Arizona[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12359-12365.
[18]
MCCARTHY J H, REIMER G M. Advances in soil gas geochemical exploration for natural resources: some current examples and practices[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12327-12338.
[19]
OAKES B W, HALE M. Dispersion patterns of carbonyl sulphide above mineral deposits[J]. Journal of Geochemical Exploration, 1987, 28(1-3): 235-249.
[20]
崔熙琳, 汪明启, 唐金荣. 金属矿气体地球化学测量技术新进展[J]. 物探与化探, 2009, 33(2): 135-139.
[21]
NOBLE R R P, SENESHEN D M, LINTERN M J, et al. Soil-gas and weak partial soil extractions for nickel exploration through transported cover in Western Australia[J]. Geochemistry: Exploration, Environment, Analysis, 2018, 18(1): 31-45.
[22]
PLET C, NOBLE R R P. Soil gases in mineral exploration: a review and the potential for future developments[J]. Geochemistry: Exploration, Environment, Analysis, 2023, 23(2): geochem2023-008..
[23]
PLET C, SIÉGEL C, NOBLE R, et al. Soil gases, pathfinders for exploration of buried sulphide deposits: insights from laboratory experiments[J]. ASEG Extended Abstracts, 2019(1): 1-4.
[24]
PLET C, SIÉGEL C, WOLTERING M, et al. Sulfur and CO2 gases emitted during weathering of sulfides: role of microbial activity and implications to exploration through cover[J]. Ore Geology Reviews, 2021, 134: 104167.
[25]
LETT R E, SACCO D A, ELDER B, et al. Real-time analysis of soil gas for carbon dioxide and oxygen to identify bedrock mineralization and geological faults beneath glacial deposits in central British Columbia[M]. Victoria: Geoscience BC, 2020.
[26]
LETT R E, SACCO D A, ELDER B, et al. Real-time detection of bedrock mineralization and geological faults beneath glacial deposits in Central British Columbia using onsite soil gas carbon dioxide and oxygen analysis by electronic gas sensors (NTS 093A/58, 093G/03)[M]. Victoria: Geoscience BC, 2020.
[27]
KRAVTSOV A I, FRIDMAN A I. Natural gases of ore deposits[J]. Academy Sciences USSR, Doklady Earth Sciences, 1965, 165: 192-193.
[28]
KAHMA A. Trained dogs as tracer of sulphide bearing glacial boulders[J]. Sedimentology, 1965, 5: 57.
[29]
KAHMA A, NURMI A, MATTSSON P. On the composition of the gases generated by sulphide-bearing boulders during weathering and on the ability of prospecting dogs to detect samples treated with these gases in the terrain[M]. Helsinki: Geological Survey of Finland, 1975.
[30]
NILSSON G. The use of dogs in prospecting for sulphide ores[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1971, 93(4): 725-728.
[31]
BROCKS J S. The use of dogs as an aid to exploration for sulphides[J]. Western Mineralogist, 1972, 45: 28-32.
[32]
LOVELL J S. Applications of vapour geochemistry to mineral exploration[D]. London: University of London, 1979.
[33]
HINKLE M E, DILBERT C A. Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona[J]. Journal of Geochemical Exploration, 1984, 20(3): 323-336.
[34]
JIN J, HU Z Q, SUN X L, et al. Geochemical exploration in thick transported overburden, Eastern China[J]. Journal of Geochemical Exploration, 1989, 33(1-3): 155-169.
[35]
TAYLOR C H, KESLER S E, CLOKE P L. Sulfur gases produced by the decomposition of sulfide minerals: application to geochemical exploration[J]. Journal of Geochemical Exploration, 1982, 17(3): 165-185.
[36]
MONTEGROSSI G, TASSI F, VASELLI O, et al. A new, rapid and reliable method for the determination of reducedsulphur (S2-) species in natural water discharges[J]. Applied Geochemistry, 2006, 21(5): 849-857.
[37]
SHINOHARA H. A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system[J]. Journal of Volcanology and Geothermal Research, 2005, 143(4): 319-333.
[38]
张洁, 程志中, 伦知颍, 等. 土壤中CO2、SO2和H2S气体测量: 一种适用于覆盖区找矿的化探方法[J]. 地质科技情报, 2016, 35(4): 12-17.
[39]
CABASSI J, TASSI F, VENTURI S, et al. A new approach for the measurement of gaseous elemental mercury (GEM) and H2S in air from anthropogenic and natural sources: examples from Mt. Amiata (Siena, central Italy) and solfatara crater (Campi Flegrei, Southern Italy)[J]. Journal of Geochemical Exploration, 2017, 175: 48-58.
[40]
CUI Z L, ZHANG X X, CHEN D C, et al. Real-time measurement of SO2, H2S, and CS2 mixed gases using ultraviolet spectroscopy and a least squares algorithm[J]. Applied Spectroscopy, 2021, 75(3): 265-273.
[41]
HINKLE M E, RYDER J L, SUTLEY S J, et al. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona[J]. Journal of Geochemical Exploration, 1990, 38(1/2): 43-67.
[42]
STEDMAN D H, CREECH M Z, CLOKE P L, et al. Formation of CS2 and OCS from decomposition of metal sulfides[J]. Geophysical Research Letters, 1984, 11(9): 858-860.
[43]
KESLER S E, GARDNER M. Factors affecting sulfur gas anomalies in overburden[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12339-12342.
[44]
LOVELL J S, HALE M, WEBB J S. Vapour geochemistry in mineral exploration[J]. Mining Magazine, 1980, 143(3): 229-239.
[45]
KESLER S E, GERDENICH M J, STEININGER R C, et al. Dispersion of soil gas around micron gold deposits[J]. Journal of Geochemical Exploration, 1990, 38(1-2): 117-132.
[46]
李生郁, 徐丰孚. 轻烃及硫化物气体测量找寻多金属隐伏矿方法试验[J]. 物探与化探, 1997, 21(2): 128-138, 127.
[47]
MCCARTHY J H, KIILSGAARD T H. Soil gas studies along the Trans-challis fault system near Idaho City, Boise County, Idaho[R]. Denver: U.S.Geological Survey, 2001.
[48]
VOLTATTORNI N, LOMBARDI S, BEAUBIEN S E. Gas migration from two mine districts: the Tolfa (Lazio, Central Italy) and the Neves-Corvo (Baixo Alentejo, Portugal) case studies[J]. Journal of Geochemical Exploration, 2015, 152: 37-53.
[49]
林成贵, 程志中, 姚晓峰, 等. 基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性[J]. 地球科学, 2020, 45(11): 4038-4053.
[50]
NORDSTROM D K, SOUTHAM G. Geomicrobiology of sulfide mineral oxidation[J]. Reviews in Mineralogy and Geochemistry, 1997, 35(1): 361-390.
[51]
RASMUSSEN R A. Emission of biogenic hydrogen sulfide[J]. Tellus, 1974, 26(1/2): 254-260.
[52]
BANWART W L, BREMNER J M. Formation of volatile sulfur compounds by microbial decomposition of sulfur-containing amino acids in soils[J]. Soil Biology and Biochemistry, 1975, 7(6): 359-364.
[53]
HINKLE M E, LOVELL J S. Sulphur gases (Chapter 8)[M]// HALE M. Handbook of exploration geochemistry. Amsterdam: Elsevier, 2000: 249-289.
[54]
GRAEDEL T E. The oxidation of ammonia, hydrogen sulfide, and methane in nonurbantropospheres[J]. Journal of Geophysical Research, 1977, 82(37): 5917-5922.
[55]
MCCARTHY J H, LAMBE R N, DIETRICH J A. A case study of soil gases as an exploration guide in glaciated terrain: Crandon massive sulfide deposit, Wisconsin[J]. Economic Geology, 1986, 81(2): 408-420.
[56]
HINKLE M E. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases[J]. Applied Geochemistry, 1994, 9(1): 53-63.
[57]
BORTNIKOVA S B, YURKEVICH N V, ABROSIMOVA N A, et al. Assessment of emissions of trace elements and sulfur gases from sulfide tailings[J]. Journal of Geochemical Exploration, 2018, 186: 256-269.
[58]
BALL T K, CROW M J, LAFFOLEY N, et al. Application of soil-gas geochemistry to mineral exploration in Africa[J]. Journal of Geochemical Exploration, 1990, 38(1-2): 103-115.
[59]
HALE M. Mineral deposits and chalcogen gases[J]. Mineralogical Magazine, 1993, 57(389): 599-606.
[60]
TARAN Y A, BERNARD A, GAVILANES J C, et al. Chemistry and mineralogy of high-temperature gas discharges from Colima Volcano, Mexico: Implications for magmatic gas-atmosphere interaction[J]. Journal of Volcanology and Geothermal Research, 2001, 108(1-4): 245-264.
[61]
FU CC, YANG T F, WALIA V, et al. Reconnaissance of soil gas composition over the buried fault and fracture zone in Southern Taiwan[J]. Geochemical Journal, 2005, 39(5): 427-439.
[62]
ZHOU X C, DU J G, CHEN Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, Southwestern China[J]. Geochemical Transactions, 2010, 11: 5.
[63]
ZELENSKI M E, FISCHER T P, DE MOOR J M, et al. Trace elements in the gas emissions from the Erta Ale volcano, Afar, Ethiopia[J]. Chemical Geology, 2013, 357: 95-116.
[64]
ZELENSKI M, MALIK N, YU T R. Emissions of trace elements during the 2012-2013 effusive eruption of tolbachik volcano, Kamchatka: enrichment factors, partition coefficients and aerosol contribution[J]. Journal of Volcanology and Geothermal Research, 2014, 285: 136-149.
[65]
JÁCOME-PAZ M P, GONZÁLEZ-ROMO I A, PROL-LEDESMA R M, et al. Multivariate analysis of CO2, H2S and CH4 diffuse degassing and correlation with fault systems in Agua Caliente - Tzitzio, Michoacán, México[J]. Journal of Volcanology and Geothermal Research, 2020, 394: 106808.
[66]
ANAND RR, ASPANDIAR M F, NOBLE R R P. A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith[J]. Ore Geology Reviews, 2016, 73: 394-416.
[67]
王强, 王学求, 刘汉粮, 等. 半干旱—干旱地区以钙积层为采样介质的隐伏金矿地球化学勘查[J]. 地质学报, 2022, 96(3): 1104-1120.
[68]
龚庆杰, 夏学齐, 刘宁强. 2011—2020中国应用地球化学研究进展与展望[J]. 矿物岩石地球化学通报, 2020, 39(5): 927-944.
[69]
KLUSMAN R W. Soil gas and related methods for natural resource exploration[M]. Chichester: John Wiley, 1993.
[70]
张民堂. 二氧化硫气体测量找矿法[J]. 化工地质, 1983, 5(1): 72-73.
[71]
TODA K, OHIRA S I, TANAKA T, et al. Field instrument for simultaneous large dynamic range measurement of atmospheric hydrogen sulfide, methanethiol, and sulfur dioxide[J]. Environmental Science & Technology, 2004, 38(5): 1529-1536.
[72]
LIN C G, CHENG ZZ, CHEN X, et al. Application of multi-component gas geochemical survey for deep mineral exploration in covered areas[J]. Journal of Geochemical Exploration, 2021, 220: 106656.
[73]
AIUPPA A, FEDERICO C, GIUDICE G, et al. Chemical mapping of a fumarolic field: La Fossa crater, Vulcano Island (Aeolian Islands, Italy)[J]. Geophysical Research Letters, 2005, 32(13): L13309.
[74]
ROUSE G E, STEVENS D N. The use of sulfur dioxide gas geochemistry in the detection of sulfide deposits[C]. American Institute of Mining and Metallurgical Engineers: Annual Meeting of American Institute of Mining and Metallurgical Engineers (March 3, 1971). New York: American Institute of Mining and Metallurgical Engineers, 1971.
[75]
MCCARTHY J H, BIGELOW R C. Multiple gas analyses using a mobile mass spectrometer[J]. Journal of Geochemical Exploration, 1990, 38(1-2): 233-245.
[76]
FREDERICKSON A F, LEHNERTZ C A, KELLOGG H E. Mobility, flexibility highlight a mass spectrometer-computer technique for regional exploration[J]. Engineering & Mining Journal, 1971, 172(6): 116-118.
[77]
POLITO P A, CLARKE J D A, BONE Y, et al. A CO2-O2-light hydrocarbon-soil-gas anomaly above the junction orogenic gold deposit: a potential, alternative exploration technique[J]. Geochemistry: Exploration, Environment, Analysis, 2002, 2(4): 333-344.
[78]
HALE M. Gas geochemistry and deeply buried mineral deposits: the contribution of the Applied Geochemistry Research Group, Imperial College of Science and Technology, London[J]. Geochemistry: Exploration, Environment, Analysis, 2010, 10(3): 261-267.
[79]
万卫, 陈振亚, 程志中, 等. CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究[J]. 物探与化探, 2019, 43(1): 70-76.
[80]
CHENG Z Z, WANG Q, LIN C G, et al. Application of portable multi-component gas analyzer to mineral exploration in semi-arid steppes of Northern China: a case study from the Qinjiaying Ag-Pb-Zn prospect[J]. Applied Geochemistry, 2024, 166: 105996.
[81]
刘汉彬, 韩娟, 石晓, 等. 气体地球化学测量方法在皂火壕砂岩型铀矿勘查中的应用试验研究[J]. 铀矿地质, 2023, 39(2): 287-301.
[82]
郭志娟, 孔牧, 张华, 等. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1): 12-15.

Comments

PDF(6358 KB)

Accesses

Citation

Detail

Sections
Recommended

/