Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors

Yuntao LI, Wenlong DING, Jun HAN, Cheng HUANG, Laiyuan WANG, Qingxiu MENG

PDF(23272 KB)
PDF(23272 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5) : 263-287. DOI: 10.13745/j.esf.sf.2024.6.27

Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors

Author information +
History +

Abstract

Tectonic fractures are one of main reservoir spaces in carbonate rocks, which can provide a good conduit for oil and gas transportation and reservoir space in tight limestone. The development of tectonic fractures is affected by various factors such as tectonic location, lithology, reservoir thickness, temperature, peripheral pressure and tectonic faulting, among which tectonic faulting caused by local tectonic stress in the regional tectonic stress field is an important factor controlling the development of tectonic fractures. In view of the characteristics of carbonate reservoirs and fracture development, we use the inversion function of rock mechanical parameters based on 3D seismic data volume, calibrated using dynamic rock mechanical parameters for a single well, to obtain a non-homogeneous rock mechanical model to improve the authenticity and accuracy of mechanical parameters in the model in the simulation of the stress field. Using the method of self-adaptive boundary condition constraint the optimal boundary conditions are automatically obtained when the error between the simulation and measured results is minimized, significantly improving the accuracy and reliability of the stress field simulation. On this basis, the fracture development characteristics and fracture activity in reserviors in the SHB16 fault zone and adjacent areas are quantitatively characterized using parameters including reservoir tensile rupture rate, shear rupture rate, comprehensive rupture rate, horizontal stress difference, stress difference coefficient, and sliding trend coefficient for the fault plane. We carried out qualitative and quantitative investigation into the effect of controlling parameters, such as horizontal stress difference, distance from faults and fault activity intensity in the vertical direction, on the fracture development characteristics; the correlations between variables were quatified using Spearman’s rank correlation coefficient. On the basis of clarifying the controlling factors of reservoir fracture development, we constructed the reservior development indexes for Ordovician carbonate reservoirs to classify the Ordovician carbonate reservoirs into categories I-IV from the best to the worst, and clarified the correlation between the deformation modes of the strike-slip faults and the degree of fracture development in sizable reserviors, further establishing the geologic model under different reservoir categories. The above results not only improve the accuracy and reliability of quantitative prediction of fracture development characteristics and multiparameter distribution rules based on stress field simulation, but also have significant importance for speeding up the exploration and development process of carbonate reservoirs.

Key words

Shunbei area / Ordovician carbonate reservoirs / tectonic stress field simulation / quantitative prediction of fracture multiparameter distribution / quantitative evaluation of reservoir scale

Cite this article

Download Citations
Yuntao LI , Wenlong DING , Jun HAN , et al . Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors. Earth Science Frontiers. 2024, 31(5): 263-287 https://doi.org/10.13745/j.esf.sf.2024.6.27

References

[1]
张鹏, 侯贵廷, 潘文庆, 等. 新疆柯坪地区碳酸盐岩对构造裂缝发育的影响[J]. 北京大学学报(自然科学版), 2011, 47(5): 831-836.
[2]
DING W L, FAN T L, YU B S, et al. Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, Northwest China[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 62-70.
[3]
刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300.
[4]
DENG S, LI H L, ZHANG Z P, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137.
[5]
HAN X Y, DENG S, TANG L J, et al. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: a study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 410-427.
[6]
郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238.
[7]
云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787.
[8]
段金宝, 潘磊, 石司宇, 等. 川东涪陵地区15号走滑断裂带几何学、 运动学特征及演化过程研究[J]. 地学前缘, 2023, 30(6): 57-68.
[9]
曾韬, 凡睿, 夏文谦, 等. 四川盆地东部走滑断裂识别与特征分析及形成演化: 以涪陵地区为例[J]. 地学前缘, 2023, 30(3): 366-385.
[10]
LI Y T, DING W L, ZENG T, et al. Structural geometry and kinematics of a strike-slip fault zone in an intracontinental thrust system: a case study of the No. 15 fault zone in the Fuling Area, eastern Sichuan Basin, Southwest China[J]. Journal of Asian Earth Sciences, 2023, 242: 105512.
[11]
张继标, 张仲培, 汪必峰, 等. 塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测[J]. 石油与天然气地质, 2018, 39(5): 955-963, 1055.
[12]
朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[13]
LIU J S, DING W L, GU Y, et al. Methodology for predicting reservoir breakdown pressure and fracture opening pressure in low-permeability reservoirs based on an in situ stress simulation[J]. Engineering Geology, 2018, 246: 222-232.
[14]
朱圣举, 赵向原, 张皎生, 等. 低渗透砂岩油藏天然裂缝开启压力及影响因素[J]. 西北大学学报(自然科学版), 2016, 46(4): 573-578.
[15]
戴俊生, 刘敬寿, 杨海盟, 等. 铜城断裂带阜二段储层应力场数值模拟及开发建议[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 1-9.
[16]
周新桂, 张林炎, 黄臣军. 华庆探区长63储层破裂压力及裂缝开启压力估测与开发建议[J]. 中南大学学报(自然科学版), 2013, 44(7): 2812-2818.
[17]
刘敬寿. 铜城断裂带天33断块阜二段储层裂缝定量描述[D]. 东营: 中国石油大学(华东), 2016.
[18]
邬光辉, 李建军, 卢玉红. 塔中Ⅰ号断裂带奥陶系灰岩裂缝特征探讨[J]. 石油学报, 1999, 20(4): 19-23.
[19]
丁文龙, 许长春, 久凯, 等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.
[20]
丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220.
[21]
HAN L J. Characteristics of Ordovician limestone fractures in the northern Tarim Basin and their controlling effects on karst reservoirs[J]. Acta Petrolei Sinica, 2010, 31(6): 933-940.
[22]
BARBIER M, HAMON Y, CALLOT J P, et al. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: the Madison Formation (Sheep Mountain, Wyoming, USA)[J]. Marine and Petroleum Geology, 2012, 29(1): 50-67.
[23]
丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74.
[24]
LIU J S, DING W L, YANG H M, et al. Quantitative multiparameter prediction of fractured tight sandstone reservoirs: a case study of the Yanchang Formation of the Ordos Basin, central China[J]. SPE Journal, 2021, 26(5): 3342-3373.
[25]
LIU H, ZUO Y J, RODRIGUEZ-DONO A, et al. Study on multi-period palaeotectonic stress fields simulation and fractures distribution prediction in Lannigou gold mine, Guizhou[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 92.
[26]
YUAN J Y, NENG X C, ZHU J W, et al. Features and effects of basement faults on deposition in the Tarim Basin[J]. Earth Science Reviews the International Geological Journal Bridging the Gap Between Research Articles and Textbooks, 2015, 145: 43-55.
[27]
LI Z, QIU N S, CHANG J, et al. Precambrian evolution of the Tarim Block and its tectonic affinity to other major continental blocks in China: new clues from U-Pb geochronology and Lu-Hf isotopes of detrital zircons[J]. Precambrian Research, 2015, 270: 1-21.
[28]
XU Z Q, HE B Z, ZHANG C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162.
[29]
SUN Q Q, FAN T L, GAO Z Q, et al. New insights on the geometry and kinematics of the Shunbei 5 strike-slip fault in the central Tarim Basin, China[J]. Journal of Structural Geology, 2021, 150: 104400.
[30]
TENG C Y, CAI Z X, HAO F, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone: a case study from the north SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140: 104159.
[31]
李本亮, 管树巍, 李传新, 等. 塔里木盆地塔中低凸起古构造演化与变形特征[J]. 地质论评, 2009, 55(4): 521-530.
[32]
GAO J, LONG L L, KLEMD R, et al. Tectonic evolution of the South Tianshan Orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98(6): 1221-1238.
[33]
贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、 形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91.
[34]
邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520.
[35]
LI C X, WANG X F, LI B L, et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39(1): 48-58.
[36]
YU J B. Using cylindrical surface-based curvature change rate to detect faults and fractures[J]. Geophysics, 2014, 79(5): O1-O9.
[37]
张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28(5): 653-663.
[38]
郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6): 925-934.
[39]
LI Y J, ZHANG Q, ZHANG G Y, et al. Cenozoic faults and faulting phases in the western Tarim Basin (NW China): effects of the collisions on the southern margin of the Eurasian Plate[J]. Journal of Asian Earth Sciences, 2016, 132: 40-57.
[40]
SOBEL E R, DUMITRU T A. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5043-5063.
[41]
WINDLEY B F, ALLEN M B, ZHANG C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128.
[42]
ZOBACK M D, PESKA P. In-situ stress and rock strength in the GBRN/DOE pathfinder well, South Eugene Island, Gulf of Mexico[J]. Journal of Petroleum Technology, 1995, 47(7): 582-585.
[43]
陆诗阔, 王迪, 李玉坤, 等. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J]. 天然气地球科学, 2015, 26(10): 1844-1850.
[44]
焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839.
[45]
李培军, 陈红汉, 唐大卿, 等. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系[J]. 地球科学, 2017, 42(1): 93-104.
[46]
LIU J S, ZHANG G J, BAI J P, et al. Quantitative prediction of the drilling azimuth of horizontal wells in fractured tight sandstone based on reservoir geomechanics in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2022, 136: 105439.
[47]
LIU J S, DING W L, WANG R Y, et al. Methodology for quantitative prediction of fracture sealing with a case study of the Lower Cambrian Niutitang Formation in the Cen’gong Block in South China[J]. Journal of Petroleum Science and Engineering, 2018, 160: 565-581.
[48]
RAJABI M, TINGAY M, KING R, et al. Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations[J]. Basin Research, 2017, 29: 622-640.
[49]
YAGHOUBI A A, ZEINALI M. Determination of magnitude and orientation of the in situ stress from borehole breakout and effect of pore pressure on borehole stability: case study in Cheshmeh Khush oil field of Iran[J]. Journal of Petroleum Science and Engineering, 2009, 67(3/4): 116-126.
[50]
TINGAY M R P, MORLEY C K, HILLIS R R, et al. Present-day stress orientation in Thailand’s basins[J]. Journal of Structural Geology, 2010, 32(2): 235-248.
[51]
JIU K, DING W L, HUANG W H, et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, East China[J]. Journal of Petroleum Science and Engineering, 2013, 110: 119-131.
[52]
LIU J S, DING W L, WANG R Y, et al. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: a case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong Block, South China[J]. Marine and Petroleum Geology, 2017, 84: 289-310.
[53]
HOLCOMB D J. Using acoustic emissions to determine in situ stress: problems and promise[J]. Geomechanics, 1983, 57: 11-21.
[54]
ISHIDA T. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials, 2001, 15(5/6): 283-295.
[55]
ZHOU J, JIN Y, CHEN M. Experimental investigation of hydraulic fracturing in random naturally fractured blocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1193-1199.
[56]
WEN Q Z, WANG S T, DUAN X F, et al. Experimental investigation of proppant settling in complex hydraulic-natural fracture system in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 70-80.
[57]
DAHI TALEGHANI A, GONZALEZ M, SHOJAEI A. Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations[J]. Computers and Geotechnics, 2016, 71: 361-368.
[58]
FATAHI H, HOSSAIN M M, SARMADIVALEH M. Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 409-424.
[59]
LIU J S, DING W L, YANG H M, et al. 3D geomechanical modeling and numerical simulation of in situ stress fields in shale reservoirs: a case study of the lower Cambrian Niutitang Formation in the Cen’gong Block, South China[J]. Tectonophysics, 2017, 712: 663-683.
[60]
GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 1920, A221(4): 163-198.
[61]
HANDIN J. On the Coulomb-Mohr failure criterion[J]. Journal of Geophysical Research, 1969, 74(22): 5343-5348.
[62]
PEARSON E S, SNOW B A S. Tests for rank correlation coefficients[J]. Biometrika, 1962, 49(1/2): 185-191.
[63]
PIANTADOSI J, HOWLETT P, BOLAND J. Matching the grade correlation coefficient using a copula with maximum disorder[J]. Journal of Industrial and Management Optimization, 2007, 3(2): 305-312.
[64]
MARITZ J S. Distribution-free statistical methods[M]. London: Chapman and Hall, 1981.
[65]
MYERS J L, WELL A D, LORCH R F. Research design and statistical analysis[M]. New York: Routledge, 2013.

Comments

PDF(23272 KB)

Accesses

Citation

Detail

Sections
Recommended

/