Recent advances in heat flow measurement and new understanding of terrestrial heat flow distribution in terrestrial areas of China

Feng LIU, Guiling WANG, Guangzheng JIANG, Shengbiao HU, Wei ZHANG, Wenjing LIN, Jinhui LIU, Xinyong ZHANG, Zewei QU, Chuanzhi LIAO

PDF(6577 KB)
PDF(6577 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6) : 19-30. DOI: 10.13745/j.esf.sf.2024.7.8

Recent advances in heat flow measurement and new understanding of terrestrial heat flow distribution in terrestrial areas of China

Author information +
History +

Abstract

Terrestrial heat flow is a key parameter in geothermal researches. Building upon the analyses of previously compiled terrestrial heat flow data, this paper examines the newly measured (260 sets), collected and screened (112 sets) data by authors since 2016. The added heat flow data effectively filled large data gaps in the southwest, northwest and northeast and improved the data density in the eastern region of China mainland. The proportion of high-quality data was improved to 86.3%. Using the latest data the calculated average terrestrial heat flow in China was 63.8 mW/m2, higher than the national average value in the fourth compilation, with higher average values found for most of the primary and secondary tectonic units of China and lower values for the Qinghai-Tibet Plateau. The statistics of heat-flow data of typical geothermal systems showed that high average heat flow conditions could significantly improve the distribution range of conductive geothermal resources and the output temperature of hot springs, but were not a controlling factor for the formation of the two types of geothermal resources. Based on the latest terrestrial heat flow data and contour map of China related phenomena and problems were discussed, such as the increase of low heat flow area in the Qinghai-Tibet Plateau, the “overestimation” of early heat flow data in the North China Plain, and the existence of heat flow indicator magma sacs in the Changbai Mountain. It was noted that heat flow monitoring stations in China were still relatively few, and, with the continuous updating and standardization of the measurement methods, plus further improvements in data quantity/quality and sampling locations, the previously assessed regional heat flow characteristics might need to be re-examined. This study deepens the understanding of the status of terrestrial heat flow in China, and can provide better support for regional geothermal basic research and resource exploration.

Key words

terrestrial heat flow / land areas of China / conductive geothermal resources / convective geothermal resources

Cite this article

Download Citations
Feng LIU , Guiling WANG , Guangzheng JIANG , et al . Recent advances in heat flow measurement and new understanding of terrestrial heat flow distribution in terrestrial areas of China. Earth Science Frontiers. 2024, 31(6): 19-30 https://doi.org/10.13745/j.esf.sf.2024.7.8

References

[1]
汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编[J]. 地质科学, 1988, 23(2): 196-204.
[2]
姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910.
[3]
FURLONG K P, CHAPMAN D S. Thermal state of the lithosphere[J]. Reviews of Geophysics, 1987, 25(6): 1255-1264.
[4]
POLLACK H N, HURTER S J, JOHNSON J R. Heat flow from the Earth’s interior: analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280.
[5]
WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013.
[6]
LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[7]
汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015: 64-122.
[8]
FUCHS S, NORDEN B, ARTEMIEVA I, et al. The global heat flow database: release 2021[R]. Potsdam: GFZ Data Services, 2021. DOI: 10.5880/fidgeo.2021.014.
[9]
中国科学院地质研究所地热组. 中国第一批大地热流数据[J]. 地震学报, 1979, 1(1): 91-107.
[10]
汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编(第二版)[J]. 地震地质, 1990, 12(4): 351-363, 366.
[11]
王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056.
[12]
胡圣标, 何丽娟, 汪集旸. 中国大陆地区大地热流数据汇编(第三版)[J]. 地球物理学报, 2001, 44(5): 611-626.
[13]
LEE C R, CHENG W T. Preliminary heat flow measurements in Taiwan[C]//Paper presented at the fourth circum-Pacific energy and mineral resources conference. Singapore: [s.n.], 1986: 31-36.
[14]
DAVIES J, DAVIES D. Earth’s surface heat flux[J]. Solid Earth, 2010, 1(1): 5-24.
[15]
李春荣, 饶松, 胡圣标, 等. 川东南焦石坝页岩气区现今地温场特征[J]. 地球物理学报, 2017, 60(2): 617-627.
[16]
雷晓东, 胡圣标, 李娟, 等. 北京平原区西北部大地热流与深部地温分布特征[J]. 地球物理学报, 2018, 61(9): 3735-3748.
[17]
张超, 张盛生, 李胜涛, 等. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报, 2018, 61(11): 4545-4557.
[18]
金春爽, 付修根, 陈文彬, 等. 藏北地区钻孔大地热流值测量[J]. 地球物理学报, 2019, 62(8): 3095-3105.
[19]
GAO P, QIU Q F, JIANG G Z, et al. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements[J]. Geophysical Journal International, 2018, 214(1): 254-264.
[20]
LIU Y C, QIU N S, LI H L, et al. Terrestrial heat flow and crustal thermal structure in the northern slope of Tazhong uplift in Tarim Basin[J]. Geothermics, 2020, 83: 101709.
[21]
WANG Y B, WANG L J, HU D, et al. The present-day geothermal regime of the North Jiangsu Basin, East China[J]. Geothermics, 2020, 88: 101829.
[22]
XU W, HUANG S P, ZHANG J, et al. Present-day geothermal regime of the Uliastai Depression, Erlian Basin, North China. Advances of exploration and utilization technology of geothermal resources in China[J]. Energy Exploration and Exploitation, 2019, 37(2): 770-786.
[23]
ZHANG J, HUANG S P, ZUO Y H, et al. Terrestrial heat flow in the Baiyinchagan sag, Erlian Basin, northern China[J]. Geothermics, 2020, 86: 101799.
[24]
ZHANG C, JIANG G Z, SHI Y Z, et al. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan Plateau[J]. Geothermics, 2018, 72: 182-192.
[25]
JIANG G Z, TANG X Y, RAO S, et al. High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton[J]. Journal of Asian Earth Sciences, 2016, 118: 1-10.
[26]
王朱亭, 张超, 姜光政, 等. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 2019, 62(11): 4313-4322.
[27]
许益青. 闽南沿海地区钻孔实测热流值及深部温度预测[J]. 福建地质, 2019, 38(3): 216-225.
[28]
ZHENG Y, LI H B, GONG Z. Geothermal study at the Wenchuan earthquake Fault Scientific Drilling Project-hole 1 (WFSD-1): borehole temperature, thermal conductivity, and well log data[J]. Journal of Asian Earth Sciences, 2016, 117: 23-32.
[29]
王一波, 胡圣标, 聂栋刚, 等. 郯庐断裂带是热异常带吗: 来自断裂带南段热流的约束[J]. 地球物理学报, 2019, 62(8): 3078-3094.
[30]
刘峰, 王贵玲, 张薇, 等. 燕山中部大地热流及岩石圈热结构特征: 以承德市七家—茅荆坝地热田为例[J]. 地质学报, 2020, 94(7): 1950-1959.
[31]
刘峰, 王贵玲, 张薇, 等. 江西宁都县北部大地热流特征及地热资源成因机制[J]. 地质通报, 2020, 39(12): 1883-1890.
[32]
闫晓雪, 甘浩男, 刘峰, 等. 江西赣县大地热流特征与热源机制研究[J]. 地球学报, 2023, 44(1): 107-116.
[33]
LIU F, WANG A D, WANG G L, et al. Characteristics of terrestrial heat flow and lithospheric thermal structure in typical intermountain basin at the eastern foot of Yanshan Mountain, North China[J]. Frontiers in Earth Science, 2021, 9: 758605.
[34]
LIU F, ZHANG W, WANG G L, et al. Geothermal anomalies in the Xianshuihe area: implications for tunnel construction along the Sichuan-Tibet railway, China[J]. Journal of Groundwater Science and Engineering, 2023, 11(3): 237-248.
[35]
王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-450, 134, 451-459.
[36]
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
[37]
蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557.
[38]
王贵玲, 蔺文静, 张薇, 等. 中国地热资源[M]. 北京: 科学出版社, 2019.
[39]
王贵玲, 刘志明, 蔺文静, 等. 中国地热资源分布图(附说明书)[M]. 北京: 地质出版社, 2018.
[40]
张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2): 255-268.
[41]
JIANG G Z, HU S B, SHI Y Z, et al. Terrestrial heat flow of continental China: updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36-48.
[42]
姚亚辉, 贾小丰, 李胜涛, 等. 雄安新区D01井岩溶热储下伏太古界中热流测定研究[J]. 中国地质, 2022, 49(6): 1723-1731.
[43]
陈墨香, 黄歌山, 张文仁, 等. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学, 1982, 17(3): 239-252.
[44]
陈墨香. 华北地热[M]. 北京: 科学出版社, 1988.
[45]
JIANG G Z, HU S B, CUI T R, et al. Thermal structure beneath Changbaishan volcano, northeastern Asia: new insights from temperature logging and numerical modelling[J]. Geophysical Journal International, 2023, 235(2): 1228-1239.

Comments

PDF(6577 KB)

Accesses

Citation

Detail

Sections
Recommended

/