Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin

Lirong DOU, Wensong HUANG, Xiangwen KONG, Ping WANG, Zibin ZHAO

PDF(14853 KB)
PDF(14853 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 191-205. DOI: 10.13745/j.esf.sf.2023.9.36

Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin

Author information +
History +

Abstract

The Duvernay shale in the Upper Devonian is a formation of shale rich in oil and gas, created during the peak transgression period in the Western Canada Basin. This study aims to elucidate the factors influencing hydrocarbon enrichment in the Duvernay shale through the analysis of sedimentary elements, fluid distribution, reservoir quality, and drivers of organic matter enrichment. Utilizing data from cores, well logging, thin sections, scanning electron microscopy, 3D pore reconstruction, and organic geochemistry, this research examines the geological context to determine that oil and gas accumulation in the Duvernay shale is governed by the sedimentary conditions of siliceous shale, organic matter thermal maturity, reservoir quality, and stable structural settings. The Duvernay Formation, situated in a deep-water shelf environment during the Late Devonian, comprises primarily marl, mudstone, and shale lithologies. it is observed that Type II and III marine organic matters are abundant in the Duvernay shale through the identification of ten lithofacies, with siliceous shale being predominant. These organic materials exhibit moderate thermal maturity, falling within the condensate to wet gas stage, leading to a high condensate to gas ratio. Oil and gas are predominantly found in siliceous shale with organic pores created by clay-grade minerals, showcasing organic and intra-granular pore types. The shale possesses high effective porosity, with well-connected and horizontally distributed pores that display vertical connectivity characteristics. Diagenesis enhances the physical properties of the shale reservoir, while natural fractures boost permeability. Ultimately, the preservation of Duvernay shale oil is heavily dependent on a stable structural setting.

Key words

Western Canada Basin / Duvernay shale / lithofacies / thermal maturity of organic matter / hydrocarbon enrichment mechanism

Cite this article

Download Citations
Lirong DOU , Wensong HUANG , Xiangwen KONG , et al . Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin. Earth Science Frontiers. 2024, 31(4): 191-205 https://doi.org/10.13745/j.esf.sf.2023.9.36

References

[1]
US Energy Information Administration. annual energy outlook 2020[R]. Washington: US Department of Energy, 2020. https://www.eia.gov/aeo.
[2]
邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12.
[3]
杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24 (5): 553-559.
[4]
周庆凡, 金之钧, 杨国丰, 等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质, 2019, 40 (3): 469-477.
[5]
黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、 富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28.
[6]
王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43 (6): 850-862.
[7]
李倩文, 马晓潇, 高波, 等. 美国重点页岩油区勘探开发进展及启示[J]. 新疆石油地质, 2021, 42 (5): 630-640.
[8]
张福祥, 李国欣, 郑新权, 等. 北美后页岩革命时代带来的启示[J]. 中国石油勘探, 2022, 27(1): 26-39.
[9]
LYSTER S, CORLETT H J, BERHANE H. Hydrocarbon resource potential of the Duvernay Formation in Alberta-update[R]// AER/AGS Open File Report. Alberta: The Alberta Geological Survey, 2017: 2.
[10]
李国欣, 罗凯, 石德勤. 页岩油气成功开发的关键技术、 先进理念与重要启示: 以加拿大都沃内项目为例[J]. 石油勘探与开发, 2020, 47(4): 739-749.
[11]
张仁贵, 刘迪仁, 彭成, 等. 中国陆相页岩油勘探开发现状及展望[J]. 现代化工, 2022, 42(3): 6-10
[12]
周雪. 美国页岩油勘探开发现状及其对中国的启示[J]. 现代化工, 2022, 42(7): 5-9
[13]
PRICE R A. Cordilleran tectonics and the evolution of the Western Canada Sedimentary Basin[J]. Bulletin of Canadian Petroleum Geology, 1990, 38(1): 176-177.
[14]
PORTER J W, PRICE R A, MCCROSSAN R G. The western Canada sedimentary basin[J]. Physical and Engineering Sciences, 1982, 305(1489): 169-192.
[15]
Machel H G, Foght J. Products and depth limits of microbial activity in petroliferous subsurface settings[M]//Microbial sediments. Heidelberg, Berlin: Springer, 2000: 105-120.
[16]
孔祥文, 汪萍, 夏朝辉, 等. 西加拿大沉积盆地Simonette区块上泥盆统Duvernay页岩地质特征与流体分布规律[J]. 中国石油勘探, 2022, 27(2): 93-107.
[17]
WRIGHT G N, MCMECHAN M E, POTTER D E G, et al. Structure and architecture of the Western Canada sedimentary basin[J]. Geological Atlas of the Western Canada Sedimentary Basin, 1994, 4: 25-40.
[18]
WHALEN M T, EBERLI G P, VAN BUCHEM F S P, et al. Bypass margins, basin-restricted wedges, and platform-to-basin correlation, Upper Devonian, Canadian Rocky Mountains: implications for sequence stratigraphy of carbonate platform systems[J]. Journal of Sedimentary Research, 2000, 70(4): 913-936.
[19]
CHOW N, Wendte J, STASIUK L D. Productivity versus preservation controls on two organic-rich carbonate facies in the Devonian of Alberta: sedimentological and organic petrological evidence[J]. Bulletin of Canadian Petroleum Geology, 1995, 43(4): 433-460.
[20]
STOAKES F A. Nature and control of shale basin fill and its effect on reef growth and termination: Upper Devonian Duvernay and Ireton Formations of Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology, 1980, 28(3): 345-410.
[21]
LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
[22]
ANFORT S J, BACHU S, BENTLEY L R. View correspondence (jump link). regional-scale hydrogeology of the Upper Devonian-Lower Creataceous sedimentary succession, South-Central Alberta Basin, Canada(Article)[J]. AAPG Bulletin, 2001, 85(4): 637-660.
[23]
WANG G, CARR T R. Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin[J]. AAPG Bulletin, 2013, 97(12): 2173-2205.
[24]
ROSS D J K, BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada Sedimentary Basin: application of an integrated formation evaluation[J]. AAPG Bulletin, 2008, 92(1): 87-125.
[25]
KUUSKRAA V, STEVENS S. Lessons learned to help optimize development[J]. Oil and Gas Journal, 2009, 107: 52-57.
[26]
邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 2版. 北京: 地质出版社, 2013.
[27]
牛嘉玉, 蒋凌志, 史卜庆, 等. 油气矿藏地质与评价[M]. 北京: 科学出版社, 2013.
[28]
CHALMERS G R L, BUSTIN R M. Lower Cretaceous gas shales in Northeastern British Columbia, Part II: evaluation of regional potential gas resources[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 22-61.
[29]
ALLAN J, CREANEY S. Oil families of the Western Canada Basin[J]. Bulletin of Canadian Petroleum Geology, 1991, 39(2): 107-122.
[30]
DAVIS M, WILLIAMS R, WILLBERG D, et al. Novel controlled pressure coring and laboratory methodologies enable quantitative determination of resource-in-place and pvt behavior of the Duvernay shale[C]. Alberta: SPE Unconventional Resources Conference Canada. OnePetro, 2013.
[31]
WUST R A, HACKLEY P C, NASSICHUK B R, et al. Vitrinite reflectance versus pyrolysis Tmax data: Assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Alberta, Canada[C]. Alberta: SPE Unconventional Resources Conference and Exhibition-Asia Pacific. OnePetro, 2013.
[32]
BEATON A P, PAWLOWICZ J G, ANDERSON S D A, et al. Rock eval, total organic carbon and adsorption isotherms of the Duvernay and Muskwa formations in Alberta: shale gas data release[R]//Energy Resources Conservation Board. Alberta: ERCB/AGS Open File Report. Alberta: The Alberta Geological Survey, 2010, 4(2010): 33.
[33]
NICHOLAS B H, JULIA M M, LEVI J K, et al. Organic matter accumulation in the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin, from sequence stratigraphic analysis and geochemical proxies[J]. Sedimentary Geology, 2018, 376: 185-203.
[34]
GREEN D G, MOUNTJOY E W. Fault and conduit controlled burial dolomitization of the Devonian West-Central Alberta Deep Basin[J]. Bulletin of Canadian Petroleum Geology, 2005, 53(2): 101-129.
[35]
US Energy Information Administration. Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States[R]. Washington: US Department of Energy, 2013.
[36]
JARVIED M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[37]
于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4): 211-220.
[38]
CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imagingMicrostructure of Gas Shales[J]. AAPG Bulletin, 2012, 96(4): 665-677.
[39]
MILLIKEN K L, ESCH W L, REED R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas(Article)[J]. AAPG Bulletin, 2012, 96(8): 0149-1423.
[40]
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
[41]
DOW W G. Kerogen studies and geological interpretations[J]. Journal of Geochemical Exploraton, 1977, 7: 79-99.
[42]
CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 223-239.
[43]
吉利明, 邱军利, 夏燕青, 等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256
[44]
李玉喜, 聂海宽, 龙鹏宇. 我国富含有机质泥页岩发育特点与页岩气战略选区[J]. 天然气工业, 2009, 29(12): 115-118, 152-153.

Comments

PDF(14853 KB)

Accesses

Citation

Detail

Sections
Recommended

/