电针调控PPARγ-CD36信号通路降低Hba-a1、Hbb-bt表达减轻脊髓损伤后细胞凋亡的研究

李明娇, 唐成林, 杨祝歆, 赵鸿娣, 王嘉培, 邢珂晗, 黄思琴

PDF(2414 KB)
PDF(2414 KB)
重庆医科大学学报 ›› 2025, Vol. 50 ›› Issue (03) : 311-321. DOI: 10.13406/j.cnki.cyxb.003784
基础研究

电针调控PPARγ-CD36信号通路降低Hba-a1、Hbb-bt表达减轻脊髓损伤后细胞凋亡的研究

作者信息 +

Electroacupuncture reduces the expression of Hba-a1 and Hbb-bt and alleviates cell apoptosis after spinal cord injury by regulating the PPARγ-CD36 signaling pathway

Author information +
History +

摘要

目的 本研究旨在建立脊髓损伤小鼠模型探讨电针(electroacupuncture,EA)干预小鼠急性脊髓损伤(spinal cord injury,SCI)后细胞凋亡的作用和机制。 方法 采用雌性C 57 BL/6小鼠进行SCI造模,造模成功后使用随机法分为:脊髓损伤组(SCI组)、Electroacupuncture组(EA组)、Rosiglitazone组(R组),另设立假手术组(Sham组)。造模成功后对EA组小鼠取双侧“夹脊穴”和“足三里穴”进行电针,每日1次,连续治疗14 d;R组腹腔注射过氧化物酶体增殖物激活受体γ(peroxisome proliferator activated receptor γ,PPARγ)激动剂:Rosiglitazone(5 mg/kg),Sham及SCI组不予特殊干预。采用小鼠后肢运动功能评分系统(basso mouse scale,BMS)评分评价运动功能,HE染色法、免疫荧光法检测脊髓损伤后的病理改变,转录组测序(RNA sequencing,RNA-Seq)、定量蛋白质组学(tandem mass tag/isobaric tags for relative and absolute quantification,TMT/iTRAQ)技术检测电针作用的靶点及机制,Western blot法检测PPARγ、分化簇36(cluster of differentiation 36,CD36)、血红蛋白亚基α1(hemoglobin alpha,adult chain 1,Hba-a1)、血红蛋白β亚基(hemoglobin,beta adult t chain,Hbb-bt)、胱氨酸蛋白酶-3(Caspase-3,CASP3)蛋白表达水平。 结果 与SCI组相比,EA组和R组的后肢运动功能、组织结构和残存细胞数量均有改善。EA组和R组Caspase-3表达降低,PPARγ和CD36表达增加,EA组Hba-a1和Hbb-bt表达降低。此外,RNA-Seq、TMT/iTRAQ技术结果分析、韦恩分析及双组学联合分析确定了Hba-a1和Hbb-bt为电针作用的靶基因。KEGG通路富集分析表明电针被证明对PPAR信号通路有明显影响。 结论 电针可以通过调控PPARγ-CD36信号通路促进SCI后Hba-a1、Hbb-bt的清除,降低Caspase-3表达水平,减少细胞凋亡的发生,促进脊髓神经功能的恢复。

Abstract

Objective To establish a mouse model of spinal cord injury (SCI),and to investigate the effect of electroacupuncture(EA) intervention on cell apoptosis after acute SCI and its mechanism. Methods Female C57BL/6 mice were used to establish a model of SCI,and after successful modeling,the mice were randomly divided into SCI group,EA group,and Rosiglitazone group(R group);a sham-operation group(Sham group) was also established. After successful modeling,the mice in the EA group were given EA at bilateral Jiaji points and Zusanli once a day for 14 days,those in the R group were given intraperitoneal injection of the PPARγ agonist Rosiglitazone(5 mg/kg),and those in the Sham group and the SCI group were not given any specific treatment. BMS score was used to assess motor function;HE staining and immunofluorescence assay were used to observe pathological changes after SCI;RNA-Seq and TMT/iTRAQ techniques were used to identify the targets and mechanisms of EA;Western blot was used to measure the protein expression levels of PPARγ,CD36,Hba-a1,Hbb-bt,and caspase-3. Results Compared with the SCI group,the EA group and the R group had improvements in hindlimb motor function,tissue structure,and the number of surviving cells. The EA group and the R group had a significant reduction in the expression of caspase-3 and significant increases in the expression of PPARγ and CD36,and the EA group had significant reductions in the expression of Hba-a1 and Hbb-bt. In addition,RNA-Seq and TMT/iTRAQ techniques,significant analysis,Venn analysis,and dual-omics analysis identified Hba-a1 and Hbb-bt as the target genes of EA. The KEGG pathway enrichment analysis showed that EA had a significant effect on the PPAR signaling pathway. Conclusion By regulating the PPARγ-CD36 signaling pathway,EA can promote the clearance of Hba-a1 and Hbb-bt after SCI,reduce the expression level of caspase-3,alleviate cell apoptosis,and facilitate the recovery of spinal cord nerve function.

关键词

电针 / 脊髓损伤 / 凋亡 / 转录组测序 / 定量蛋白质组学

Key words

electroacupuncture / spinal cord injury / apoptosis / RNA-Seq / TMT/iTRAQ

中图分类号

R651.2

引用本文

导出引用
李明娇 , 唐成林 , 杨祝歆 , . 电针调控PPARγ-CD36信号通路降低Hba-a1、Hbb-bt表达减轻脊髓损伤后细胞凋亡的研究. 重庆医科大学学报. 2025, 50(03): 311-321 https://doi.org/10.13406/j.cnki.cyxb.003784
Li Mingjiao, Tang Chenglin, Yang Zhuxin, et al. Electroacupuncture reduces the expression of Hba-a1 and Hbb-bt and alleviates cell apoptosis after spinal cord injury by regulating the PPARγ-CD36 signaling pathway[J]. Journal of Chongqing Medical University. 2025, 50(03): 311-321 https://doi.org/10.13406/j.cnki.cyxb.003784

参考文献

1
GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global,regional,and national burden of traumatic brain injury and spinal cord injury,1990-2016:a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol201918(1):56-87.
2
Ahuja CS Wilson JR Nori S,et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers20173:17018.
3
Sugeno A Piao WH Yamazaki M,et al. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice[J]. Neural Regen Res202116(7):1258-1265.
4
Ding H Yu J Chang WJ,et al. Searching for differentially expressed proteins in spinal cord injury based on the proteomics analysis[J]. Life Sci2020242:117235.
5
Morton AP Hadley JB Ghasabyan A,et al. The α-globin chain of hemoglobin potentiates tissue plasminogen activator induced hyperfibrinolysis in vitro [J]. J Trauma Acute Care Surg202292(1):159-166.
6
Sun Q Wu W Hu YC,et al. Early release of high-mobility group box 1(HMGB1) from neurons in experimental subarachnoid hemorrhage in vivo and in vitro [J]. J Neuroinflammation201411:106.
7
姚媛媛,张 鑫,赵丽明,等. 高原相关高血压研究现状与展望[J]. 四川大学学报(医学版)202455(6):1454-1459.
Yao YY Zhang X Zhao LL,et al. Research Status and Prospects of Plateau-Related Hypertension[J]. Journal of Sichuan University(Medical Edition)202455(6):1454-1459.
8
Rainer TH Wong LKS Lam W,et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke[J]. Clin Chem200349(4):562-569.
9
He YD Hua Y Keep RF,et al. Hemoglobin expression in neurons and glia after intracerebral hemorrhage[J]. Acta Neurochir Suppl2011111:133-137.
10
Huang CC Chou CA Chen WY,et al. Empagliflozin ameliorates free fatty acid induced-lipotoxicity in renal proximal tubular cells via the PPARγ/CD36 pathway in obese mice[J]. Int J Mol Sci202122(22):12408.
11
Moore KJ Rosen ED Fitzgerald ML,et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake[J]. Nat Med20017(1):41-47.
12
Shibuya-Fujiwara N Hirayama F Ogata Y,et al. Phagocytosis in vitro of polyethylene glycol-modified liposome-encapsulated hemoglobin by human peripheral blood monocytes plus macrophages through scavenger receptors[J]. Life Sci200170(3):291-300.
13
Shi ZJ Yuan SY Shi LL,et al. Programmed cell death in spinal cord injury pathogenesis and therapy[J]. Cell Prolif202154(3):e12992.
14
Liu J Wu YC. Electro-acupuncture-modulated miR-214 prevents neuronal apoptosis by targeting Bax and inhibits sodium channel Nav1.3 expression in rats after spinal cord injury[J]. Biomed Pharmacother201789:1125-1135.
15
Xin YY Wang JX Xu AJ. Electroacupuncture ameliorates neuroinflammation in animal models[J]. Acupunct Med202240(5): 474-483.
16
刘筱蔼,罗友根. MiRNA调控脑缺血/再灌注诱导的自噬信号通路研究进展[J]. 中山大学学报(医学科学版)202445(1):21-27.
Liu XA Luo YG. Research progress on MiRNA regulation of autophagy signaling pathway induced by cerebral ischemia/reperfusion[J]. Journal of Sun Yat sen University(Medical Science Edition)202445(1): 21-27.
17
Conesa A Madrigal P Tarazona S,et al. A survey of best practices for RNA-seq data analysis[J]. Genome Biol201617:13.
18
Liu S Kang Y Zhang C,et al. Isobaric tagging for relative and absolute protein quantification(iTRAQ)-based quantitative proteomics analysis of differentially expressed proteins 1 week after spinal cord injury in a rat model[J]. Med Sci Monit202026:e924266.
19
程 觅,张 雪,史阳琳,等. 实验大鼠和小鼠穴位定位的研究概况[J]. 上海针灸杂志202140(5):640-646.
Cheng M Zhang X Shi YL,et al. A survey of acupoint location in experimental rats and mice[J]. Shanghai J Acupunct Moxibustion202140(5):640-646.
20
Liu H Rose ME Culver S,et al. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats[J]. Biochem Biophys Res Commun2016472(4):648-655.
21
Li HP Zhang Q Yang XH,et al. PPAR-γ agonist rosiglitazone reduces autophagy and promotes functional recovery in experimental traumaticspinal cord injury[J]. Neurosci Lett2017650:89-96.
22
Basso DM Fisher LC Anderson AJ,et al. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains[J]. J Neurotrauma200623(5):635-659.
23
Rojas BE Hartman MD Figueroa CM,et al. Proteolytic cleavage of Arabidopsis thaliana phosphoenolpyruvate carboxykinase-1 modifies its allosteric regulation[J]. J Exp Bot202172(7):2514-2524.
24
Lisanti MP Scherer PE Vidugiriene J,et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source:implications for human disease[J]. J Cell Biol1994126(1):111-126.
25
Vasseur F Helbecque N Lobbens S,et al. Hypoadiponectinaemia and high risk of type 2 diabetes are associated with adiponectin-encoding(ACDC) gene promoter variants in morbid obesity:evidence for a role of ACDC in diabesity[J]. Diabetologia200548(5):892-899.
26
Chmurzyńska A. The multigene family of fatty acid-binding proteins(FABPs):function,structure and polymorphism[J]. J Appl Genet200647(1):39-48.
27
Tran AP Warren PM Silver J. The biology of regeneration failure and success after spinal cord injury[J]. Physiol Rev201898(2):881-917.
28
Turtle JD Henwood MK Strain MM,et al. Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury[J]. Exp Neurol2019311:115-124.
29
Jiang T Qin T Gao P,et al. SIRT1 attenuates blood-spinal cord barrier disruption after spinal cord injury by deacetylating p66Shc[J]. Redox Biol202360:102615.
30
de Campos Guerra JC Mourão MA França CN,et al. Impact of coagulation in the development of thromboembolic events in patients with spinal cord injury[J]. Spinal Cord201452(4):327-332.
31
Wang JL Luo X Liu L. Targeting CARD6 attenuates spinal cord injury(SCI) in mice through inhibiting apoptosis,inflammation and oxidative stress associated ROS production[J]. Aging201911(24):12213-12235.
32
Fraussen J Beckers L van Laake-Geelen CCM,et al. Altered circulating immune cell distribution in traumatic spinal cord injury patients in relation to clinical parameters[J]. Front Immunol202213:873315.
33
Li C Wu ZR Zhou LQ,et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury[J]. Sig Transduct Target Ther20227:65.
34
Viñals M Bermúdez I Llaverias G,et al. Aspirin increases CD36,SR-BI,and ABCA1 expression in human THP-1 macrophages[J]. Cardiovasc Res200566(1):141-149.
35
Shao GC Cao Y Chen ZL,et al. How to use open-pFind in deep proteomics data analysis?—a protocol for rigorous identification and quantitation of peptides and proteins from mass spectrometry data[J]. Biophys Rep20217(3):207-226.
36
Krishna S Cheng BK Sharma DR,et al. PPAR-γ activation enhances myelination and neurological recovery in premature rabbits with intraventricular hemorrhage[J]. Proc Natl Acad Sci U S A2021118(36):e2103084118.
37
Miao YM Zhang CL Yang L,et al. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα[J]. Cell Commun Signal202220(1):48.

基金

国家青年科学基金资助项目(81403466)
重庆市科委资助项目(cstc2017jcyjAX0363)
重庆市基础研究与前沿探索资助项目(cstc2018jcyjAX0036)
2020年重庆市科委卫计委资助项目(2021ZY023890)
2021年重庆市科技局资助项目(cstc2021jcyj-msxmX0203)

评论

PDF(2414 KB)

Accesses

Citation

Detail

段落导航
相关文章

/