直肠癌患者术后感染的病原菌分布和预测模型

陈博文, 赵晋, 魏晓霞, 吕鸣, 干晟俊, 袁玉华

PDF(840 KB)
PDF(840 KB)
重庆医科大学学报 ›› 2025, Vol. 50 ›› Issue (03) : 352-358. DOI: 10.13406/j.cnki.cyxb.003707
临床研究

直肠癌患者术后感染的病原菌分布和预测模型

作者信息 +

Pathogen distribution and predictive nomogram for postoperative nosocomial infection in rectal cancer

Author information +
History +

摘要

目的 探究直肠癌患者术后发生医院感染的病原菌分布,并构建发生医院感染的预测模型。 方法 回顾性收集1 537例在2021年1月至2022年12月于浙江大学医学院附属邵逸夫医院进行直肠癌手术治疗的患者,并根据其是否发生医院感染,采用倾向性评分匹配法(propensity score matching,PSM)进行1∶1匹配,最终纳入感染组及对照组各83例。对发生医院感染的患者,进行菌种分布及耐药性分析。采用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归筛选直肠癌患者术后发生医院感染的危险因素,运用多因素logistics回归建立预测模型,构建Nomogram图,利用受试者工作特征(receiver operating characteristic,ROC)曲线、校准曲线和决策曲线分析评估模型的预测价值。 结果 83例医院感染患者中,共分离病原菌93株,其中87株为细菌,包括革兰阴性菌62株(66.67%),以大肠埃希菌和铜绿假单胞菌为主;革兰阳性菌25株(26.88%),以粪肠球菌为主;真菌6株(6.45%),均为白假丝酵母菌。通过LASSO回归筛选变量并使用多因素logistics回归建立模型,结果显示吸烟史(OR=3.97,95%CI=1.27~12.43)、引流管置管时间(OR=1.19,95%CI=1.08~1.30)、手术前后中性粒细胞差值(OR=1.23,95%CI=1.01~1.49)、手术前后C反应蛋白差值(OR=1.05,95%CI=1.03~1.07)为直肠癌患者术后发生医院感染的独立危险因素。基于以上因素构建的列线图模型ROC曲线下面积为0.933(95%CI=0.896~0.969)。校准曲线分析显示,该模型的实际、校正曲线拟合好,且接近于理想曲线。决策曲线分析结果提示,该模型具有良好的临床效用和较高的净临床效益。 结论 本研究构建的预测模型对直肠癌患者术后发生医院感染具有良好的预测价值。

Abstract

Objective To examine the distribution of pathogens that cause postoperative nosocomial infections in patients with rectal cancer(RC) and to construct a predictive nomogram for nosocomial infection. Methods The clinical data of 1537 RC patients admitted to Sir Run Run Shaw Hospital between January 2021 and December 2022 were collected. Patients were assigned 1∶1 by propensity score matching(PSM) to the infection group(n=83) and control group(n=83) based on the occurrence of nosocomial infection. The distribution and drug resistance of bacteria in patients with nosocomial infection were analyzed. Risk factors for postoperative nosocomial infection were identified by least absolute shrinkage and selection operator(LASSO) regression,and a predictive nomogram was constructed using multivariate logistics regression. The predictive performance of the model was evaluated by receiver operating characteristic(ROC) curve,calibration curve,and decision curve analysis(DCA). Results A total of 93 strains of pathogens were isolated from the 83 infected patients,including 62 strains of Gram-negative bacteria (66.67%;predominantly Escherichia coli and Pseudomonas aeruginosa),25 strains of Gram-positive bacteria(26.88%; mainly Enterococcus faecalis),and 6 strains of fungi(6.45%; all Candida albicans). LASSO and multivariate logistics regression showed that smoking (odds ratio[OR]=3.97,95%CI=1.27-12.43),the dwelling time of drainage tube(OR=1.19,95%CI=1.08-1.30),difference in preoperative and postoperative neutrophil counts(OR=1.23,95%CI=1.01-1.49),and difference between preoperative and postoperative C-reactive protein levels(OR=1.05,95%CI=1.03-1.07) were independent risk factors for postoperative nosocomial infection in RC patients. The area under the ROC curve of the nomogram constructed based on the above factors was 0.933(95%CI=0.896-0.969). The calibration curve showed that the predicted risk was in good agreement with the actual observed risk of infection. In addition,DCA demonstrated that the nomogram has good clinical utility and high net clinical benefits in predicting nosocomial infection. Conclusion The nomogram constructed in this study has a good predictive performance in postoperative nosocomial infection in RC patients.

关键词

直肠癌 / 医院感染 / 病原菌 / 预测模型

Key words

rectal cancer / nosocomial infection / pathogens / predictive model

中图分类号

R639

引用本文

导出引用
陈博文 , 赵晋 , 魏晓霞 , . 直肠癌患者术后感染的病原菌分布和预测模型. 重庆医科大学学报. 2025, 50(03): 352-358 https://doi.org/10.13406/j.cnki.cyxb.003707
Chen Bowen, Zhao Jin, Wei Xiaoxia, et al. Pathogen distribution and predictive nomogram for postoperative nosocomial infection in rectal cancer[J]. Journal of Chongqing Medical University. 2025, 50(03): 352-358 https://doi.org/10.13406/j.cnki.cyxb.003707

参考文献

1
Rawla P Sunkara T Barsouk A. Epidemiology of colorectal cancer:incidence,mortality,survival,and risk factors[J]. Prz Gastroenterol201914(2):89-103.
2
Ramai D Ofosu A Solanki V,et al. Incidence rates,treatment,and survival of rectal cancer among young patients:a nationwide cohort study[J].J Clin Gastroenterol202155(6):534-541.
3
TorrijoI,BalciscuetaZ,TabetJ,et al. Prospective study of urinary function and analysis of risk factors after rectal cancer surgery[J]. Tech Coloproctol202125(6):727-737.
4
Yao LL Xiao MZ Luo YT,et al. Research on the factors that influence patients with colorectal cancer participating in the prevention and control of surgical site infection:based on the extended theory of planned behaviour[J]. Health Expect202124(6):2087-2097.
5
Benson AB Venook AP Al-Hawary MM,et al. Rectal cancer,version 2.2022,NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw202220(10):1139-1167.
6
中华人民共和国卫生部. 医院感染诊断标准(试行)[J]. 中华医学杂志200181(5):314-320.
Ministry of Health of the People's Republic of China. Diagnostic criteria for nosocomial infections(proposed)[J]. Natl Med J China200181(5):314-320.
7
Rotstein C Cummings KM Nicolaou AL,et al. Nosocomial infection rates at an oncology center[J].Infect Control19889(1):13-19.
8
Gajdács M Urbán E. Epidemiological trends and resistance associated with Stenotrophomonas maltophilia bacteremia:a 10-year retrospective cohort study in a tertiary-care hospital in Hungary[J]. Diseases20197(2):41-53.
9
Kamboj M Sepkowitz KA. Nosocomial infections in patients with cancer[J]. Lancet Oncol200910(6):589-597.
10
Ha YE Kang CI Cha MK,et al. Epidemiology and clinical outcomes of bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli in patients with cancer[J]. Int J Antimicrob Agents201342(5):403-409.
11
Fentie A Wondimeneh Y Balcha A,et al. Bacterial profile,antibiotic resistance pattern and associated factors among cancer patients at University of Gondar Hospital,Northwest Ethiopia[J]. Infect Drug Resist201811:2169-2178.
12
Zhang Y Rajput A Jin N,et al. Mechanisms of immunosuppression in colorectal cancer[J]. Cancers(Basel)202012(12):3850-3873.
13
Brown H Esterházy D. Intestinal immune compartmentalization:implications of tissue specific determinants in health and disease[J]. Mucosal Immunol202114(6):1259-1270.
14
Huang W Wei ZQ Qiu YH,et al. Effects of wound infection on prognosis after laparoscopic abdominoperineal resection of rectal cancer[J].Front Oncol202212:1036241.
15
Gudiol C Aguado JM Carratalà J. Bloodstream infections in patients with solid tumors[J]. Virulence20167(3):298-308.
16
Jiang AM Liu N Ali Said R,et al. Nosocomial infections in gastrointestinal cancer patients:bacterial profile,antibiotic resistance pattern,and prognostic factors[J]. Cancer Manag Res202012:4969-4979.
17
Cordonnier C Buzyn A Leverger G,et al. Epidemiology and risk factors for gram-positive coccal infections in neutropenia:toward a more targeted antibiotic strategy[J]. Clin Infect Dis200336(2):149-158.
18
Perdikouri EIA Arvaniti K Lathyris D,et al. Infections due to multidrug-resistant bacteria in oncological patients:insights from a five-year epidemiological and clinical analysis[J]. Microorganisms20197(9):277.
19
Jiang AM Shi X Zheng HR,et al. Establishment and validation of a nomogram to predict the in-hospital death risk of nosocomial infections in cancer patients[J]. Antimicrob Resist Infect Control202211(1):29.
20
Ashour HM El-Sharif A. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients[J]. J Transl Med20097:14.
21
Marín M Gudiol C Garcia-Vidal C,et al. Bloodstream infections in patients with solid tumors:epidemiology,antibiotic therapy,and outcomes in 528 episodes in a single cancer center[J]. Medicine201493(3):143-149.
22
Antonio M Gudiol C Royo-Cebrecos C,et al. Current etiology,clinical features and outcomes of bacteremia in older patients with solid tumors[J]. J Geriatr Oncol201910(2):246-251.
23
Poirel L Madec JY Lupo A,et al. Antimicrobial resistance in Escherichia coli [J]. Microbiol Spectr20186(4):1-27.
24
Menz BD Charani E Gordon DL,et al. Surgical antibiotic prophylaxis in an era of antibiotic resistance:common resistant bacteria and wider considerations for practice[J]. Infect Drug Resist202114:5235-5252.
25
Balachandran VP Gonen M Smith JJ,et al. Nomograms in oncology:more than meets the eye[J]. Lancet Oncol201516(4):e173-e180.
26
Grimes DA. The nomogram epidemic:resurgence of a medical relic[J]. Ann Intern Med2008149(4):273-275.
27
Zaborowski AM Winter DC Lynch L. The therapeutic and prognostic implications of immunobiology in colorectal cancer:a review[J]. Br J Cancer2021125(10):1341-1349.
28
Su LX Wang XT Pan P,et al. Infection management strategy based on prevention and control of nosocomial infections in intensive care units[J]. Chin Med J2019132(1):115-119.
29
Kobayashi SD Malachowa N DeLeo FR. Neutrophils and bacterial immune evasion[J]. J Innate Immun201810(5/6):432-441.
30
Moreno MS Nietmann H Matias CM,et al. C-reactive protein:a tool in the follow-up of nosocomial pneumonia[J]. J Infect201061(3):205-211.
31
Sproston NR Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection[J]. Front Immunol20189:754.

基金

浙江省教育厅抗疫专项资助项目(Y202043587)

评论

PDF(840 KB)

Accesses

Citation

Detail

段落导航
相关文章

/