两种H9C2心肌细胞氧化损伤模型的比较

陈芸霞, 邓洪荣, 刘蕙文, 许皓, 易勤, 谭彬, 田杰, 朱静

PDF(3518 KB)
PDF(3518 KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (09) : 1079-1085. DOI: 10.13406/j.cnki.cyxb.003585
基础研究

两种H9C2心肌细胞氧化损伤模型的比较

作者信息 +

Comparison of two models of oxidative damage in H9C2 cardiomyocytes

Author information +
History +

摘要

目的 探讨低氧、低糖及血清剥夺(glucose and serum deprivation under hypoxia(1% O2),GSDH)处理与H2O2处理在构建H9C2心肌细胞氧化损伤模型中的应用价值。 方法 培养 H9C2 心肌细胞,当细胞生长状态良好时,用低氧(1% O2)、低糖(1.0 g/L)及血清剥夺联合处理或200 μmol/L的H2O2作用于心肌细胞24 h。采用CCK8实验检测细胞增殖能力;通过细胞凋亡试剂(annexinV-FITC/PI)、Hoechst染色检测细胞凋亡;细胞活性氧(reactive oxygen species,ROS)检测细胞氧化应激水平;BODIPY检测细胞脂质过氧化水平;过碘酸雪夫(periodic acid-schiff stain,PAS)染色检测细胞糖原合成能力;线粒体膜电位检测试剂(mitochondrial membrane potential assay kit with JC-1,JC-1)染色检测线粒体膜电位水平;Western blot检测能量代谢相关分子AMP依赖的蛋白激酶(Adenosine 5’-monophosphate(AMP)-activated protein kinase,AMPK)及氧化应激相关分子NAD(P)H醌脱氢酶1(NAD(P)H quinone dehydrogenase 1,NQO-1)、血红素氧合酶1(heme oxygenase-1,HO-1)蛋白表达水平。 结果 与空白组比较,GSDH处理组与H2O2处理组的心肌细胞存活率均降低,差异均有统计学意义(P<0.05)。与空白组相比,GSDH处理与H2O2处理都增加了心肌细胞的凋亡水平、ROS和脂滴堆积水平增高、糖原消耗量增加且线粒体膜电位降低。但相比于H2O2处理组,GSDH处理组的细胞糖原消耗增多更明显,脂滴堆积也更明显,并且AMPK磷酸化水平显著降低。 结论 低氧、低糖及GSDH处理与H2O2处理均能造成H9C2心肌细胞氧化损伤,但相比于H2O2处理组,GSDH处理组的效果更符合体内心肌损伤时的能量代谢转变,有望作为一种更简单便捷的心肌氧化损伤模型应用于科研。

Abstract

Objective To investigate the value of glucose and serum deprivation under hypoxia(1% O2)(GSDH) treatment and H2O2 treatment in establishing a model of oxidative injury in H9C2 cardiomyocytes. Methods H9C2 cardiomyocytes were cultured,and when the cardiomyocytes were in good growth conditions,they were treated with the combination of low oxygen(1% O2),low glucose(1.0 g/L),and serum deprivation or H2O2 200 μmol/L alone for 24 hours. CCK8 assay was sued to measure the proliferation ability of cells;the apoptosis reagent(AnnexinV-FITC/PI) and Hoechst staining were used to measure cell apoptosis;reactive oxygen species(ROS) was used to measure the level of oxidative stress;BODIPY testing was used to measure the level of lipid peroxidation in cells;periodic acid-Schiff staining was used to measure the ability for glycogen synthesis;mitochondrial membrane potential assay kit with JC-1 staining was used to measure mitochondrial membrane potential;Western blot was used to measure the protein expression levels of the energy metabolism-related molecule AMP-activated protein kinase(AMPK) and the oxidative stress-related molecules NAD(P)H quinone dehydrogenase 1(NQO-1) and heme oxygenase-1(HO-1). Results Compared with the blank group,both the GSDH treatment group and the H2O2 treatment group had a significant reduction in the viability of cardiomyocytes(P<0.05). Compared with the blank group,both GSDH treatment and H2O2 treatment increased the levels of cardiomyocyte apoptosis,ROS and lipid droplet accumulation,and glycogen consumption,with a reduction in mitochondrial membrane potential in cardiomyocytes. However,compared with the H2O2 treatment group,the GSDH treatment group showed significantly greater increases in glycogen consumption and lipid droplet accumulation and a significant reduction in AMPK phosphorylation. Conclusion Both GSDH treatment and H2O2 treatment can cause oxidative injury to H9C2 cardiomyocytes,but compared with H2O2 treatment,the effect of GSDH treatment is more in line with the energy metabolism transition during myocardial injury in vivo,and therefore,it is expected to be used as a simpler and more convenient model of oxidative injury to cardiac myocardium for scientific research.

关键词

低氧低糖血清剥夺 / 过氧化氢 / 氧化应激 / 能量代谢 / 免疫印迹法

Key words

glucose and serum deprivation under hypoxia / hydrogen peroxide / oxidative stress / energy metabolism / Western blot

中图分类号

R331

引用本文

导出引用
陈芸霞 , 邓洪荣 , 刘蕙文 , . 两种H9C2心肌细胞氧化损伤模型的比较. 重庆医科大学学报. 2024, 49(09): 1079-1085 https://doi.org/10.13406/j.cnki.cyxb.003585
Cheng Yunxia, Deng Hongrong, Liu Huiwen, et al. Comparison of two models of oxidative damage in H9C2 cardiomyocytes[J]. Journal of Chongqing Medical University. 2024, 49(09): 1079-1085 https://doi.org/10.13406/j.cnki.cyxb.003585

参考文献

1
Townsend N Kazakiewicz D Lucy Wright F,et al. Epidemiology of cardiovascular disease in Europe[J]. Nat Rev Cardiol202219(2):133-143.
2
Lolley R Forman DE. Cardiac rehabilitation and survival for ischemic heart disease[J]. Curr Cardiol Rep202123(12):184.
3
Karwi QG Sun QY Lopaschuk GD. The contribution of cardiac fatty acid oxidation to diabetic cardiomyopathy severity[J]. Cells202110(11):3259.
4
Masoli JAH Mensah E Rajkumar C. Age and ageing cardiovascular collection:blood pressure,coronary heart disease and heart failure[J]. Age Ageing202251(8):afac179.
5
Carley AN Maurya SK Fasano M,et al. Short-chain fatty acids outpace ketone oxidation in the failing heart[J]. Circulation2021143(18):1797-1808.
6
Lopaschuk GD Karwi QG Tian R,et al. Cardiac energy metabolism in heart failure[J]. Circ Res2021128(10):1487-1513.
7
Ranjbarvaziri S Kooiker KB Ellenberger M,et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy[J]. Circulation2021144(21):1714-1731.
8
Zhao MM Wei HR Li CZ,et al. Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy[J]. Nat Commun202213(1):1757.
9
Chen Z Jin ZX Cai JJ,et al. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy[J]. J Mol Med2022100(12):1721-1739.
10
Zhuang LF Jia KN Chen C,et al. DYRK1B-STAT3 drives cardiac hypertrophy and heart failure by impairing mitochondrial bioenergetics[J]. Circulation2022145(11):829-846.
11
Murashige D Jang C Neinast M,et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart[J]. Science2020370(6514):364-368.
12
Dambrova M Zuurbier CJ Borutaite V,et al. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury[J]. Free Radic Biol Med2021165:24-37.
13
Li Y Ma Y Dang QY,et al. Assessment of mitochondrial dysfunction and implications in cardiovascular disorders[J]. Life Sci2022306:120834.
14
Wang X Chen XX Zhou WQ,et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways[J]. Acta Pharm Sin B202212(2):708-722.
15
Feng YN Zhang YY Xiao H. AMPK and cardiac remodelling[J]. Sci China Life Sci201861(1):14-23.
16
Steinberg GR Hardie DG. New insights into activation and function of the AMPK[J]. Nat Rev Mol Cell Biol202324(4):255-272.
17
Cruz AM Partridge KM Malekizadeh Y,et al. Brain permeable AMP-activated protein kinase activator R481 raises glycaemia by autonomic nervous system activation and amplifies the counterregulatory response to hypoglycaemia in rats[J]. Front Endocrinol202112:697445.
18
Spaulding HR Yan Z. AMPK and the adaptation to exercise[J]. Annu Rev Physiol202284:209-227.
19
Popov SV Mukhomedzyanov AV Voronkov NS,et al. Regulation of autophagy of the heart in ischemia and reperfusion[J]. Apoptosis202328(1/2):55-80.
20
Yao MR Wang ZR Jiang LY,et al. Oxytocin ameliorates high glucose- and ischemia/reperfusion-induced myocardial injury by suppressing pyroptosis via AMPK signaling pathway[J]. Biomed Pharmacother2022153:113498.
21
Fouqueray P Bolze S Dubourg J,et al. Pharmacodynamic effects of direct AMP kinase activation in humans with insulin resistance and non-alcoholic fatty liver disease:a phase 1b study[J]. Cell Rep Med20212(12):100474.
22
Zhang Q Liu SD Zhang CS,et al. AMPK directly phosphorylates TBK1 to integrate glucose sensing into innate immunity[J]. Mol Cell202282(23):4519-4536.
23
Midha AD Zhou YY Queliconi BB,et al. Organ-specific fuel rewiring in acute and chronic hypoxia redistributes glucose and fatty acid metabolism[J]. Cell Metab202335(3):504-516.
24
Nielsen R Møller N Gormsen LC,et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients[J]. Circulation2019139(18):2129-2141.

基金

国家自然科学基金面上资助项目(82270271)

评论

PDF(3518 KB)

Accesses

Citation

Detail

段落导航
相关文章

/