跑步对抑郁大鼠内侧前额叶皮质兴奋性突触的影响

杨雯宇, 肖倩, 秦露, 黄杜娟, 邓宇辉, 周梅, 王舜, 唐勇, 黄春霞

PDF(2471 KB)
PDF(2471 KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (08) : 959-966. DOI: 10.13406/j.cnki.cyxb.003570
基础研究

跑步对抑郁大鼠内侧前额叶皮质兴奋性突触的影响

作者信息 +

Effects of running on excitatory synapses in medial prefrontal cortex in rat model of depression

Author information +
History +

摘要

目的 精确定量研究跑步锻炼对慢性束缚应激(chronic restraint stress,CRS)诱导的抑郁模型大鼠内侧前额叶皮质(medial prefrontal cortex,mPFC)内Sp+兴奋性突触数量的影响。 方法 选取雄性SD大鼠(54只),经过适应性喂养和糖水基线调整,在CRS模型建立成功后随机分为对照组、抑郁模型组和模型跑步组,其中模型跑步组大鼠在束缚的第5周开始进行为期4周的跑步锻炼干预。最后,对各组大鼠进行行为学测试,并运用免疫组织化学技术结合现代体视学方法对各组大鼠mPFC内Sp+兴奋性突触变化进行精确定量研究。 结果 与对照组[(97.14±2.64)%]相比,抑郁模型组和模型跑步组大鼠糖精偏好百分比[(89.62±6.05)%]减少(P=0.002),体质量的增长减缓,强迫游泳实验中大鼠的不动时间和新环境进食抑制实验的进食潜伏期增加。4周的跑步锻炼可以有效减缓抑郁模型组大鼠糖精偏好百分比的下降[(89.30±5.06)% vs. (97.30±2.08)%,P=0.018],降低强迫游泳实验中抑郁大鼠的不动时间,并在新环境进食抑制实验中缩短抑郁大鼠的进食潜伏期。体视学精确定量分析结果显示,抑郁模型组大鼠mPFC内的Sp+兴奋性突触总量[(9.98±0.35)×108个]低于对照组[(11.50±1.27)×108个,P=0.013]。而跑步锻炼则可以逆转抑郁大鼠mPFC内的Sp+兴奋性突触总数的减少[模型跑步组(11.30±1.21)×108个,P=0.003]。 结论 跑步锻炼干预后CRS抑郁模型大鼠mPFC的Sp+兴奋性突触数量的改变可能是跑步锻炼发挥抗抑郁作用的神经生物学基础之一。

Abstract

Objective To precisely and quantitatively study the effects of running exercise on the number of spinophilin(Sp+) excitatory synapses in the medial prefrontal cortex(mPFC) in a rat model of depression induced by chronic restraint stress(CRS). Methods After adaptive feeding and baseline saccharin preference testing,54 male Sprague-Dawley rats were randomly divided into three groups:control group,CRS depression model group,and model+running group. The model+running group had 4-week running exercise since the 5th week of restraint. Then behavioral tests were performed for each group. The changes in Sp+ excitatory synapses in mPFC were measured quantitatively and precisely by immunohistochemistry and modern stereology. Results Compared with the control group,the depression model group showed a significantly lower saccharin preference[(97.14±2.64)% vs. (89.62±6.05)%,P=0.002],a significantly slower increase in body weight,a significantly longer immobility time in the forced swimming test,and a significantly longer latency to eat in the novelty-suppressed feeding test. Compared with the depression model group,4-week running significantly increased saccharin preference[(89.30±5.06)% vs. (97.30±2.08)%,P=0.018],and significantly shortened the immobility time of the forced swimming test and the latency to eat in the novelty-suppressed feeding test. The stereology results revealed a significantly less total number of Sp+ excitatory synapses in mPFC in the depression model group than in the control group [(9.98±0.35)×108 vs. (11.50±1.27)×108P=0.013];and running exercise significantly reversed the decrease in the total number of Sp+ excitatory synapses in mPFC in depressive rats[(11.30±1.21)×108P=0.003]. Conclusion Modulating the number of Sp+ excitatory synapses in mPFC may be one of the neurobiological bases for running to relieve depression.

关键词

跑步锻炼 / 抑郁症 / 兴奋性突触 / 内侧前额叶皮质 / 体视学

Key words

running exercise / depression / excitatory synapse / medial prefrontal cortex / stereology

中图分类号

R329.4 / R749.4+1

引用本文

导出引用
杨雯宇 , 肖倩 , 秦露 , . 跑步对抑郁大鼠内侧前额叶皮质兴奋性突触的影响. 重庆医科大学学报. 2024, 49(08): 959-966 https://doi.org/10.13406/j.cnki.cyxb.003570
Yang Wenyu, Xiao Qian, Qin Lu, et al. Effects of running on excitatory synapses in medial prefrontal cortex in rat model of depression[J]. Journal of Chongqing Medical University. 2024, 49(08): 959-966 https://doi.org/10.13406/j.cnki.cyxb.003570

参考文献

1
Smith K. Mental health:a world of depression[J]. Nature2014515(7526):181.
2
Ménard C Hodes GE Russo SJ. Pathogenesis of depression:insights from human and rodent studies[J]. Neuroscience2016321:138-162.
3
Klune CB Jin B DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility[J]. Elife202110:e64567.
4
McEwen BS. Physiology and neurobiology of stress and adaptation:central role of the brain[J]. Physiol Rev200787(3):873-904.
5
Salvadore G Nugent AC Lemaitre H,et al. Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder[J]. Neuroimage201154(4):2643-2651.
6
Luo YM Xiao Q Wang J,et al. Running exercise protects oligodendrocytes in the medial prefrontal cortex in chronic unpredictable stress rat model[J]. Transl Psychiatry20199(1):322.
7
Verpelli C Montani C Vicidomini C,et al. Mutations of the synapse genes and intellectual disability syndromes[J]. Eur J Pharmacol2013719(1/2/3):112-116.
8
Kang HJ Voleti B Hajszan T,et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder[J]. Nat Med201218(9):1413-1417.
9
Feyissa AM Chandran A Stockmeier CA,et al. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression[J]. Prog Neuropsychopharmacol Biol Psychiatry200933(1):70-75.
10
Duman RS. Neurobiology of stress,depression,and rapid acting antidepressants:remodeling synaptic connections[J]. Depress Anxiety201431(4):291-296.
11
He HY Shen WH Zheng LJ,et al. Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity[J]. Nat Commun20189(1):2893.
12
Froemke RC. Plasticity of cortical excitatory-inhibitory balance[J]. Annu Rev Neurosci201538:195-219.
13
Dimeo F Bauer M Varahram I,et al. Benefits from aerobic exercise in patients with major depression:a pilot study[J]. Br J Sports Med200135(2):114-117.
14
Dunn AL Trivedi MH Kampert JB,et al. Exercise treatment for depression:efficacy and dose response[J]. Am J Prev Med200528(1):1-8.
15
Mather AS Rodriguez C Guthrie MF,et al. Effects of exercise on depressive symptoms in older adults with poorly responsive depressive disorder:randomised controlled trial[J]. Br J Psychiatry2002180:411-415.
16
Chen LM Zhang AP Wang FF,et al. Running exercise protects the capillaries in white matter in a rat model of depression[J]. J Comp Neurol2016524(17):3577-3586.
17
Stranahan AM Khalil D Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex[J]. Hippocampus200717(11):1017-1022.
18
Yang LD Wu CY Li Y,et al. Long-term exercise pre-training attenuates Alzheimer's disease-related pathology in a transgenic rat model of Alzheimer's disease[J]. Geroscience202244(3):1457-1477.
19
Coley AA Gao WJ. PSD95:a synaptic protein implicated in schizophrenia or autism?[J]. Prog Neuropsychopharmacol Biol Psychiatry201882:187-194.
20
Hao JD Janssen WGM Tang Y,et al. Estrogen increases the number of spinophilin-immunoreactive spines in the hippocampus of young and aged female rhesus monkeys[J]. J Comp Neurol2003465(4):540-550.
21
Chiba, Numakawa T Ninomiya M,et al. Chronic restraint stress causes anxiety- and depression-like behaviors,downregulates glucocorticoid receptor expression,and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry201239(1):112-119.
22
Liu MY Yin CY Zhu LJ,et al. Sucrose preference test for measurement of stress-induced anhedonia in mice[J]. Nat Protoc201813(7):1686-1698.
23
Magnuson BA Carakostas MC Moore NH,et al. Biological fate of low-calorie sweeteners[J]. Nutr Rev201674(11):670-689.
24
Gebara E Zanoletti O Ghosal S,et al. Mitofusin-2 in the nucleus accumbens regulates anxiety and depression-like behaviors through mitochondrial and neuronal actions[J]. Biol Psychiatry202189(11):1033-1044.
25
Hu CL Luo Y Wang H,et al. Re-evaluation of the interrelationships among the behavioral tests in rats exposed to chronic unpredictable mild stress[J]. PLoS One201712(9):e0185129.
26
Ramaker MJ Dulawa SC. Identifying fast-onset antidepressants using rodent models[J]. Mol Psychiatry201722(5):656-665.
27
Cerqueira JJ Pêgo JM Taipa R,et al. Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors[J]. J Neurosci200525(34):7792-7800.
28
Zhang JY Liu TH He Y,et al. Chronic stress remodels synapses in an amygdala circuit-specific manner[J]. Biol Psychiatry201985(3):189-201.
29
Tse YC Nath M Larosa A,et al. Opposing changes in synaptic and extrasynaptic N-methyl-D-aspartate receptor function in response to acute and chronic restraint stress[J]. Front Mol Neurosci202114:716675.
30
Yi JH Jeon J Kwon H,et al. Rubrofusarin attenuates chronic restraint stress-induced depressive symptoms[J]. Int J Mol Sci202021(10):3454.
31
Bjørnebekk A Mathé AA Brené S. Running has differential effects on NPY,opiates,and cell proliferation in an animal model of depression and controls[J]. Neuropsychopharmacology200631(2):256-264.
32
Greenwood BN Foley TE Day HE,et al. Freewheel running prevents learned helplessness/behavioral depression:role of dorsal raphe serotonergic neurons[J]. J Neurosci200323(7):2889-2898.
33
Xiao K Luo YM Liang X,et al. Beneficial effects of running exercise on hippocampal microglia and neuroinflammation in chronic unpredictable stress-induced depression model rats[J]. Transl Psychiatry202111(1):461.
34
Tang J Liang X Dou XY,et al. Exercise rather than fluoxetine promotes oligodendrocyte differentiation and myelination in the hippocampus in a male mouse model of depression[J]. Transl Psychiatry202111(1):622.
35
Price RB Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression:an integrative model[J]. Mol Psychiatry202025(3):530-543.
36
Radley JJ Sisti HM Hao J,et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex[J]. Neuroscience2004125(1):1-6.
37
Shansky RM Morrison JH. Stress-induced dendritic remodeling in the medial prefrontal cortex:effects of circuit,hormones and rest[J]. Brain Res20091293:108-113.
38
Li CC Liu B Xu JY,et al. Phloretin decreases microglia-mediated synaptic engulfment to prevent chronic mild stress-induced depression-like behaviors in the mPFC[J]. Theranostics202313(3):955-972.
39
Li WF Ali T He KW,et al. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression[J]. Brain Behav Immun202192:10-24.
40
Shen WM Jin LQ Zhu AQ,et al. Treadmill exercise enhances synaptic plasticity in the ischemic penumbra of MCAO mice by inducing the expression of Camk2a via CYFIP1 upregulation[J]. Life Sci2021270:119033.
41
Zhuang PC Tan ZN Jia ZY,et al. Treadmill exercise reverses depression model-induced alteration of dendritic spines in the brain areas of mood circuit[J]. Front Behav Neurosci201913:93.

基金

国家自然科学基金青年基金资助项目(81501156)

评论

PDF(2471 KB)

Accesses

Citation

Detail

段落导航
相关文章

/