胰腺导管腺癌免疫检查点阻断耐药的生物标志物和治疗选择

王虎, 尹艳梅, 李婧, 朱克祥

PDF(495 KB)
PDF(495 KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (03) : 242-245. DOI: 10.13406/j.cnki.cyxb.003440
综述

胰腺导管腺癌免疫检查点阻断耐药的生物标志物和治疗选择

作者信息 +

Biomarkers and treatment options for immune checkpoint blockade resistance in pancreatic ductal adenocarcinoma

Author information +
History +

摘要

免疫检查点阻断(immune checkpoint blockade,ICB)的单药治疗在胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)中未见成效,采取合理的联合疗法是克服PDAC ICB抵抗的有效策略。目前为克服PDAC ICB耐药的联合手段主要包括增强PDAC表面的程序性死亡受体-配体1(programmed cell death-ligand 1,PD-L1)或组织相容性复合体Ⅰ(histocompatibility complex Ⅰ,MHC-Ⅰ);靶向免疫细胞中发挥抑制功能的关键效应因子,改善PDAC的免疫抑制微环境;联合能量消融、光动力疗法、纳米材料包裹等手段促进肿瘤相关抗原的释放,刺激免疫激活。本综述旨在对近年PDAC中发现的ICB耐药靶标和新兴手段进行梳理,为克服PDAC ICB耐药提供新思路。

Abstract

Monotherapy for immune checkpoint blockade(ICB) lacks efficacy in pancreatic ductal adenocarcinoma(PDAC),and rational combination therapy is an effective strategy to overcome ICB resistance in PDAC. Currently,combination therapies to overcome ICB resistance in PDAC mainly include the following:enhanced expression of programmed death receptor-ligand 1 or histocompatibility complex Ⅰ on the surface of PDAC cells;targeting key effectors in immune cells that play an immunosuppressive function to improve the immunosuppressive microenvironment of PDAC;combining the methods such as energy ablation,photodynamic therapy,and nano-material encapsulation to promote the release of tumor-associated antigens and stimulate immune activation. This article reviews the targets for ICB resistance and emerging methods in PDAC in recent years,so as to provide new ideas to address ICB resistance in PDAC.

关键词

胰腺导管腺癌 / 免疫检查点阻断 / 耐药 / 生物标志物

Key words

pancreatic ductal adenocarcinoma / immune checkpoint blockade / drug resistance / biomarkers

中图分类号

R453.9

引用本文

导出引用
王虎 , 尹艳梅 , 李婧 , . 胰腺导管腺癌免疫检查点阻断耐药的生物标志物和治疗选择. 重庆医科大学学报. 2024, 49(03): 242-245 https://doi.org/10.13406/j.cnki.cyxb.003440
Wang Hu, Yin Yanmei, Li Jing, et al. Biomarkers and treatment options for immune checkpoint blockade resistance in pancreatic ductal adenocarcinoma[J]. Journal of Chongqing Medical University. 2024, 49(03): 242-245 https://doi.org/10.13406/j.cnki.cyxb.003440

参考文献

1
Siegel RL Miller KD Fuchs HE,et al. Cancer statistics,2021[J]. CA a Cancer J Clin202171(1):7-33.
2
McGuigan A Kelly P Turkington RC,et al. Pancreatic cancer:a review of clinical diagnosis,epidemiology,treatment and outcomes[J]. World J Gastroenterol201824(43):4846-4861.
3
von Hoff DD Ervin T Arena FP,et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med2013369(18):1691-1703.
4
Harrington KJ Ferris RL Blumenschein G Jr,et al. Nivolumab versus standard,single-agent therapy of investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141):health-related quality-of-life results from a randomised,phase 3 trial[J]. Lancet Oncol201718(8):1104-1115.
5
Reck M Rodríguez-Abreu D Robinson AG,et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med2016375(19):1823-1833.
6
Robert C Schachter J Long GV,et al. Pembrolizumab versus ipilimumab in advanced melanoma[J]. N Engl J Med2015372(26):2521-2532.
7
Riquelme E Maitra A McAllister F. Immunotherapy for pancreatic cancer:more than just a gut feeling[J]. Cancer Discov20188(4):386-388.
8
Zhang ZZ Cheng LJ Li J,et al. Targeting Plk1 sensitizes pancreatic cancer to immune checkpoint therapy[J]. Cancer Res202282(19):3532-3548.
9
Zhang YQ Velez-Delgado A Mathew E,et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer[J]. Gut201766(1):124-136.
10
Somani VK Zhang DX Dodhiawala PB,et al. IRAK4 signaling drives resistance to checkpoint immunotherapy in pancreatic ductal adenocarcinoma[J]. Gastroenterology2022162(7):2047-2062.
11
Deng YL Xia XH Zhao Y,et al. Glucocorticoid receptor regulates PD-L1 and MHC-I in pancreatic cancer cells to promote immune evasion and immunotherapy resistance[J]. Nat Commun202112(1):7041.
12
Liu J Kang R Kroemer G,et al. Targeting HSP90 sensitizes pancreas carcinoma to PD-1 blockade[J]. Oncoimmunology202211(1):2068488.
13
Yamamoto K Venida A Perera RM,et al. Selective autophagy of MHC-I promotes immune evasion of pancreatic cancer[J]. Autophagy202016(8):1524-1525.
14
Hu GF He N Cai CQ,et al. HDAC3 modulates cancer immunity via increasing PD-L1 expression in pancreatic cancer[J]. Pancreatology201919(2):383-389.
15
Zhou YK Jin X Yu HX,et al. HDAC5 modulates PD-L1 expression and cancer immunity via p65 deacetylation in pancreatic cancer[J]. Theranostics202212(5):2080-2094.
16
Lin ZQ Huang KK Guo H,et al. Targeting ZDHHC9 potentiates anti-programmed death-ligand 1 immunotherapy of pancreatic cancer by modifying the tumor microenvironment[J]. Biomedecine Pharmacother2023161:114567.
17
Ravindranathan S Passang T Li JM,et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma[J]. Nat Commun202213(1):6418.
18
Gulhati P Schalck A Jiang S,et al. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer[J]. Nat Cancer20234(1):62-80.
19
Zhu Y Knolhoff BL Meyer MA,et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models[J]. Cancer Res201474(18):5057-5069.
20
Panni RZ Herndon JM Zuo C,et al. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies[J]. Sci Transl Med201911(499):eaau9240.
21
Ager CR Boda A Rajapakshe K,et al. High potency STING agonists engage unique myeloid pathways to reverse pancreatic cancer immune privilege[J]. J Immunother Cancer20219(8):e003246.
22
Wang JX Saung MT Li KY,et al. CCR2/CCR5 inhibitor permits the radiation-induced effector T cell infiltration in pancreatic adenocarcinoma[J]. J Exp Med2022219(5):e20211631.
23
Garcia Garcia CJ Huang YQ Fuentes NR,et al. Stromal HIF2 regulates immune suppression in the pancreatic cancer microenvironment[J]. Gastroenterology2022162(7):2018-2031.
24
Koikawa K Kibe S Suizu F,et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy[J]. Cell2021184(18):4753-4771.
25
Dominguez CX Müller S Keerthivasan S,et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy[J]. Cancer Discov202010(2):232-253.
26
Lopez-Yrigoyen M Cassetta L Pollard JW. Macrophage targeting in cancer[J]. Ann N Y Acad Sci20211499(1):18-41.
27
Dixit A Sarver A Zettervall J,et al. Targeting TNF-α-producing macrophages activates antitumor immunity in pancreatic cancer via IL-33 signaling[J]. JCI Insight20227(22):e153242.
28
Quaranta V Rainer C Nielsen SR,et al. Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer[J]. Cancer Res201878(15):4253-4269.
29
Wang W Marinis JM Beal AM,et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer[J]. Cancer Cell202038(4):585-590.
30
Zhang Y Chandra V Riquelme Sanchez E,et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer[J]. J Exp Med2020217(12):e20190354.
31
Cappellesso F Orban MP Shirgaonkar N,et al. Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer[J]. Nat Cancer20223(12):1464-1483.
32
Osborne N Sundseth R Burks J,et al. Gastrin vaccine improves response to immune checkpoint antibody in murine pancreatic cancer by altering the tumor microenvironment[J]. Cancer Immunol Immunother201968(10):1635-1648.
33
Zhang ZF Yang AN Chaurasiya S,et al. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy[J]. Cancer Gene Ther202229(6):722-733.
34
Tichet M Wullschleger S Chryplewicz A,et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ Tcells and reprogramming macrophages[J]. Immunity202356(1):162-179.
35
Faraoni EY O’Brien BJ Strickland LN,et al. Radiofrequency ablation remodels the tumor microenvironment and promotes neutrophil-mediated abscopal immunomodulation in pancreatic cancer[J]. Cancer Immunol Res202311(1):4-12.
36
Zhang Q Green MD Lang XT,et al. Inhibition of ATM increases interferon signaling and sensitizes pancreatic cancer to immune checkpoint blockade therapy[J]. Cancer Res201979(15):3940-3951.
37
Zhao J Wen XF Tian L,et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer[J]. Nat Commun201910(1):899.
38
Sun F Zhu QR Li TL,et al. Regulating glucose metabolism with prodrug nanoparticles for promoting photoimmunotherapy of pancreatic cancer[J]. Adv Sci20218(4):2002746.
39
Zhao J Xiao ZL Li TT,et al. Stromal modulation reverses primary resistance to immune checkpoint blockade in pancreatic cancer[J]. ACS Nano201812(10):9881-9893.

基金

国家自然科学基金资助项目(81960516)

评论

PDF(495 KB)

Accesses

Citation

Detail

段落导航
相关文章

/