针对无线局域网的动态性导致数据标签有效性随时间变化,需定期更新和重新标注数据,增加了数据标签标注难度的问题,提出一种无线局域网多模态数据标签自适应标注方法.首先,通过动态滑动邻近排序算法清洗重复的无线局域网多模态数据,利用循环神经网络融合多模态数据,获取更全面的数据信息.其次,将融合后的无线局域网数据划分为确定集和模糊集,采用支持向量机标注确定集数据标签,利用K-近邻(KNN)分类器标注模糊集数据标签,从而实现无线局域网多模态数据标签自适应标注.实验结果表明,该方法的重复数据删除率始终高于12%,一致指数为0.992 8,平均绝对百分比误差为0.453 9, ROC曲线更靠近坐标轴左上角,AUC值为0.982 4,内存占用率始终低于10%,无线局域网多模态数据标签标注效果较好.