肌萎缩侧索硬化的药物治疗进展

杨天米, 商慧芳

PDF(586 KB)
PDF(586 KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (05) : 536-541. DOI: 10.13406/j.cnki.cyxb.003504
神经系统变性疾病的治疗

肌萎缩侧索硬化的药物治疗进展

作者信息 +

Advances in pharmacotherapy for amyotrophic lateral sclerosis

Author information +
History +

摘要

肌萎缩侧索硬化(amyotrophic lateral sclerosis,ALS)是一种以上、下运动神经元选择性丢失为主要特征,进行性加重的神经系统变性疾病,目前尚无有效的治愈方法。随着ALS疾病机制和遗传学的研究深入,以及基因调控策略的创新,为ALS疗法开发创造了有希望的新选择。本文围绕反义寡核苷酸疗法、腺病毒相关病毒介导的基因治疗和细胞治疗在ALS中的研究进展进行综述。

Abstract

Amyotrophic lateral sclerosis(ALS) is a progressive neurodegenerative disease characterized by the selective loss of upper and lower motor neurons. Effective cures for this disease have not been available yet. However,promising options for the treatment of ALS have been approaching thanks to the growing understanding of ALS pathogenesis and genetics as well as the innovation of gene regulation strategies. This article provides a comprehensive review of advances on antisense oligonucleotide therapy, adeno-associated virus-mediated gene therapy,and cell therapy in ALS.

关键词

肌萎缩侧索硬化 / 药物治疗 / 基因治疗

Key words

amyotrophic lateral sclerosis / pharmacotherapy / gene therapy

中图分类号

R741.05

引用本文

导出引用
杨天米 , 商慧芳. 肌萎缩侧索硬化的药物治疗进展. 重庆医科大学学报. 2024, 49(05): 536-541 https://doi.org/10.13406/j.cnki.cyxb.003504
Yang Tianmi, Shang Huifang. Advances in pharmacotherapy for amyotrophic lateral sclerosis[J]. Journal of Chongqing Medical University. 2024, 49(05): 536-541 https://doi.org/10.13406/j.cnki.cyxb.003504

参考文献

1
Feldman EL Goutman SA Petri S,et al. Amyotrophic lateral sclerosis[J]. Lancet2022400(10360):1363-1380.
2
Todd TW Petrucelli L. Amyotrophic lateral sclerosis—insight into susceptibility[J]. Nat Rev Neurol202218:189-190.
3
Bensimon G Lacomblez L Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group[J]. N Engl J Med1994330(9):585-591.
4
Group Writing ALS Study Group Edaravone. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis:a randomised,double-blind,placebo-controlled trial[J]. Lancet Neurol201716(7):505-512.
5
Khalaf K Tornese P Cocco A,et al. Tauroursodeoxycholic acid:a potential therapeutic tool in neurodegenerative diseases[J]. Transl Neurodegener202211(1):33.
6
Fels JA Dash J Leslie K,et al. Effects of PB-TURSO on the transcriptional and metabolic landscape of sporadic ALS fibroblasts[J]. Ann Clin Transl Neurol20229(10):1551-1564.
7
Elia AE Lalli S Monsurrò MR,et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis[J]. Eur J Neurol201623(1):45-52.
8
Paganoni S Macklin EA Hendrix S,et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis[J]. N Engl J Med2020383(10):919-930.
9
Zucchi E Musazzi UM Fedele G,et al. Effect of tauroursodeoxycholic acid on survival and safety in amyotrophic lateral sclerosis:a retrospective population-based cohort study[J]. EClinicalMedicine202365:102256.
10
Oki R Izumi Y Fujita K,et al. Efficacy and safety of ultrahigh-dose methylcobalamin in early-stage amyotrophic lateral sclerosis:a randomized clinical trial[J]. JAMA Neurol202279(6):575-583.
11
Morimoto S Takahashi S Ito D,et al. Phase 1/2a clinical trial in ALS with ropinirole,a drug candidate identified by iPSC drug discovery[J]. Cell Stem Cell202330(6):766-780.
12
Bernard E Pegat A Svahn J,et al. Clinical and molecular landscape of ALS patients with SOD1 mutations:novel pathogenic variants and novel phenotypes. A single ALS center study[J]. Int J Mol Sci202021(18):6807.
13
Wei QQ Zhou QQ Chen YP,et al. Analysis of SOD1 mutations in a Chinese population with amyotrophic lateral sclerosis:a case-control study and literature review[J]. Sci Rep20177:44606.
14
Chen YP Yu SH Wei QQ,et al. Role of genetics in amyotrophic lateral sclerosis:a large cohort study in Chinese mainland population[J]. J Med Genet202259(9):840-849.
15
Yamashita S Ando Y. Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis[J]. Transl Neurodegener20154:13.
16
Smith RA Miller TM Yamanaka K,et al. Antisense oligonucleotide therapy for neurodegenerative disease[J]. J Clin Invest2006116(8):2290-2296.
17
Miller TM Pestronk A David W,et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis:a phase 1,randomised,first-in-man study[J]. Lancet Neurol201312(5):435-442.
18
McCampbell A Cole T Wegener AJ,et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models[J]. J Clin Invest2018128(8):3558-3567.
19
Miller T Cudkowicz M Shaw PJ,et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS[J]. N Engl J Med2020383(2):109-119.
20
Miller TM Cudkowicz ME Genge A,et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS[J]. N Engl J Med2022387(12):1099-1110.
21
DeJesus-Hernandez M MacKenzie IR Boeve BF,et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[J]. Neuron201172(2):245-256.
22
Majounie E Renton AE Mok K,et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia:a cross-sectional study[J]. Lancet Neurol201211(4):323-330.
23
Chen YP Lin ZQ Chen XP,et al. Large C9orf72 repeat expansions are seen in Chinese patients with sporadic amyotrophic lateral sclerosis[J]. Neurobiol Aging201638:217.
24
Pang WL Hu FH. Cellular and physiological functions of C9ORF72 and implications for ALS/FTD[J]. J Neurochem2021157(3):334-350.
25
Sareen D O'Rourke JG Meera P,et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion[J]. Sci Transl Med20135(208):208ra149.
26
Donnelly CJ Zhang PW Pham JT,et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention[J]. Neuron201380(2):415-428.
27
O'Rourke JG Bogdanik L Muhammad AKMG,et al. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD[J]. Neuron201588(5):892-901.
28
Lagier-Tourenne C Baughn M Rigo F,et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration[J]. Proc Natl Acad Sci USA2013110(47):E4530-E4539.
29
Biogen and Ionis Announce Topline Phase 1 Study Results of Investigational Drug in C9orf 72 Amyotrophic Lateral Sclerosis[EB/OL].(2022-03-28)[2024-01-27].
30
Wave Life Sciences Announces Topline Results from Phase 1b/2 FOCUS-C a 9 Study of WVE-004 for C9orf 72-associated Amyotrophic Lateral Sclerosis and Frontotemporal Dementia[EB/OL].(2023-05-23)[2024-01-27].
31
Vance C Rogelj B Hortobágyi T,et al. Mutations in FUS,an RNA processing protein,cause familial amyotrophic lateral sclerosis type 6[J]. Science2009323(5918):1208-1211.
32
Wu Y Li CY Yang TM,et al. A case of juvenile-onset amyotrophic lateral sclerosis with a de novo frameshift FUS gene mutation presenting with bilateral abducens palsy[J]. Amyotroph Lateral Scler Frontotemporal Degener202223(3/4):313-314.
33
Buratti E. Trends in understanding the pathological roles of TDP-43 and FUS proteins[J]. Adv Exp Med Biol20211281:243-267.
34
Tyzack GE Luisier R Taha DM,et al. Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis[J]. Brain2019142(9):2572-2580.
35
Notaro A Messina A la Bella V. A deletion of the nuclear localization signal domain in the fus protein induces stable post-stress cytoplasmic inclusions in SH-SY5Y cells[J]. Front Neurosci202115:759659.
36
Kino Y Washizu C Kurosawa M,et al. FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis[J]. Acta Neuropathol Commun20153:24.
37
Sharma A Lyashchenko AK Lu L,et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function[J]. Nat Commun20167:10465.
38
Korobeynikov VA Lyashchenko AK Blanco-Redondo B,et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis[J]. Nat Med202228(1):104-116.
39
Elden AC Kim HJ Hart MP,et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS[J]. Nature2010466(7310):1069-1075.
40
Glass JD Dewan R Ding JH,et al. ATXN2 intermediate expansions in amyotrophic lateral sclerosis[J]. Brain2022145(8):2671-2676.
41
Chen YP Huang R Yang Y,et al. Ataxin-2 intermediate-length polyglutamine:a possible risk factor for Chinese patients with amyotrophic lateral sclerosis[J]. Neurobiol Aging201132(10):1925.e1-1925.e5.
42
Becker LA Huang B Bieri G,et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice[J]. Nature2017544(7650):367-371.
43
Iannitti T Scarrott JM Likhite S,et al. Translating SOD1 gene silencing toward the clinic:a highly efficacious,off-target-free,and biomarker-supported strategy for fALS[J]. Mol Ther Nucleic Acids201812:75-88.
44
Bravo-Hernandez M Tadokoro T Navarro MR,et al. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS[J]. Nat Med202026(1):118-130.
45
Mueller C Berry JD McKenna-Yasek DM,et al. SOD1 suppression with adeno-associated virus and microRNA in familial ALS[J]. N Engl J Med2020383(2):151-158.
46
神济昌华成功完成国内首例渐冻症患者AAV基因治疗及 3个月随访[EB/OL].(2023-09-11)[2024-01-27].
Shenji Changhua successfully completed AAV gene therapy for the first patient with ALS in China and followed up for 3 months[EB/OL].(2023-09-11)[2024-01-27].
47
神济昌华SNUG 01临床研究在北医三院正式启动[EB/OL]. (2023-09-22)[2024-01-27].
The clinical study of Shenji Changhua SNUG 01 has been officially launched at Peking University Third Hospital[EB/OL]. (2023-09-22)[2024-01-27].
48
Pozzi S Thammisetty SS Codron P,et al. Virus-mediated delivery of antibody targeting TAR DNA-binding protein-43 mitigates associated neuropathology[J]. J Clin Invest2019129(4):1581-1595.
49
Martier R Liefhebber JM Miniarikova J,et al. Artificial microRNAs targeting C9orf72 can reduce accumulation of intra-nuclear transcripts in ALS and FTD patients[J]. Mol Ther Nucleic Acids201914:593-608.
50
Martier R Liefhebber JM García-Osta A,et al. Targeting RNA-mediated toxicity in C9orf72 ALS and/or FTD by RNAi-based gene therapy[J]. Mol Ther Nucleic Acids201916:26-37.
51
Lin HQ Hu HJ Duan WS,et al. Intramuscular delivery of scAAV9-hIGF1 prolongs survival in the hSOD1G93A ALS mouse model via upregulation of D-amino acid oxidase[J]. Mol Neurobiol201855(1):682-695.
52
Thomsen GM Alkaslasi M Vit JP,et al. Systemic injection of AAV9-GDNF provides modest functional improvements in the SOD1G93A ALS rat but has adverse side effects[J]. Gene Ther201724(4):245-252.
53
Mòdol-Caballero G García-Lareu B Herrando-Grabulosa M,et al. Specific expression of glial-derived neurotrophic factor in muscles as gene therapy strategy for amyotrophic lateral sclerosis[J]. Neurotherapeutics202118(2):1113-1126.
54
Berry JD Cudkowicz ME Windebank AJ,et al. NurOwn,phase 2,randomized,clinical trial in patients with ALS:safety,clinical,and biomarker results[J]. Neurology201993(24):e2294-e2305.
55
Gotkine M Caraco Y Lerner Y,et al. Safety and efficacy of first-in-man intrathecal injection of human astrocytes(AstroRx®) in ALS patients:phase Ⅰ/Ⅱa clinical trial results[J]. J Transl Med202321(1):122.
56
Nam JY Lee TY Kim K,et al. Efficacy and safety of Lenzumestrocel(Neuronata-R® inj. ) in patients with amyotrophic lateral sclerosis(ALSUMMIT study):study protocol for a multicentre,randomized,double-blind,parallel-group,sham procedure-controlled,phase Ⅲ trial[J]. Trials202223(1):415.
57
Nam JY Chun S Lee TY,et al. Long-term survival benefits of intrathecal autologous bone marrow-derived mesenchymal stem cells (Neuronata-R®:lenzumestrocel) treatment in ALS:propensity-score-matched control,surveillance study[J]. Front Aging Neurosci202315:1148444.

基金

国家自然科学基金面上资助项目(82371430)
四川省“十四五”生命健康重大科技资助专项(2022ZDZX0023)

评论

PDF(586 KB)

Accesses

Citation

Detail

段落导航
相关文章

/