亨廷顿病基因治疗的进展

裴中, 吴腾腾

PDF(770 KB)
PDF(770 KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (05) : 552-557. DOI: 10.13406/j.cnki.cyxb.003503
运动障碍性疾病的治疗

亨廷顿病基因治疗的进展

作者信息 +

Advancements in gene therapy for Huntington's disease

Author information +
History +

摘要

亨廷顿病是一种常染色体显性遗传病,近年来多项针对mRNA水平的干预策略相继开展临床试验,同时随着聚集的规律性间隔短回文重复序列(clustered regularly interspersed short palindromic repeats,CRISPR)/CRISPR关联基因(CRISPR associated gene,Cas)系统的日渐成熟,针对致病基因组的基因编辑策略也屡有报道。本文将围绕亨廷顿病基因治疗的临床现状、研究进展、临床评估的改进做简要综述。

Abstract

Huntington's disease is an autosomal dominant genetic disease. In recent years,clinical trials have been conducted for various intervention strategies targeting mRNA levels,and meanwhile,with the development of the clustered regularly interspersed short palindromic repeat(CRISPR)/CRISPR-associated genes system,there are also reports on gene editing strategies for pathogenic genomes. This article reviews the gene therapy for Huntington's disease in terms of current clinical status,research advances,and improvements in clinical assessment.

关键词

亨廷顿病 / 基因治疗 / 反义寡核苷酸 / 基因编辑

Key words

Huntington's disease / gene therapy / antisense oligonucleotide / gene editing

中图分类号

R745

引用本文

导出引用
裴中 , 吴腾腾. 亨廷顿病基因治疗的进展. 重庆医科大学学报. 2024, 49(05): 552-557 https://doi.org/10.13406/j.cnki.cyxb.003503
Pei Zhong, Wu Tengteng. Advancements in gene therapy for Huntington's disease[J]. Journal of Chongqing Medical University. 2024, 49(05): 552-557 https://doi.org/10.13406/j.cnki.cyxb.003503

参考文献

1
McColgan P Tabrizi SJ. Huntington's disease:a clinical review[J]. Eur J Neurol201825(1):24-34.
2
Tabrizi SJ Flower MD Ross CA,et al. Huntington disease:new insights into molecular pathogenesis and therapeutic opportunities[J]. Nat Rev Neurol202016(10):529-546.
3
Chancellor D Barrett D Nguyen-Jatkoe L,et al. The state of cell and gene therapy in 2023[J]. Mol Ther202331(12):3376-3388.
4
Ling QL Herstine JA Bradbury A,et al. AAV-based in vivo gene therapy for neurological disorders[J]. Nat Rev Drug Discov202322(10):789-806.
5
Schulz M Levy DI Petropoulos CJ,et al. Binding and neutralizing anti-AAV antibodies:detection and implications for rAAV-mediated gene therapy[J]. Mol Ther202331(3):616-630.
6
Lek A Wong B Keeler A,et al. Death after high-dose rAAV9 gene therapy in a patient with duchenne's muscular dystrophy[J]. N Engl J Med2023389(13):1203-1210.
7
Mondal J Pillarisetti S Junnuthula V,et al. Hybrid exosomes,exosome-like nanovesicles and engineered exosomes for therapeutic applications[J]. J Control Release2023353:1127-1149.
8
马 跃,邓 莉,李善刚. 纳米粒子在CRISPR/Cas9基因治疗中的应用[J]. 生物工程学报202238(6):2087-2104.
Ma Y Deng L Li SG. Application of nanoparticles in CRISPR/Cas9-based gene therapy[J]. Chin J Biotechnol202238(6):2087-2104.
9
Tabrizi SJ Leavitt BR Landwehrmeyer GB,et al. Targeting huntingtin expression in patients with Huntington's disease[J]. N Engl J Med2019380(24):2307-2316.
10
Tabrizi SJ Estevez-Fraga C van Roon-Mom WMC,et al. Potential disease-modifying therapies for Huntington's disease:lessons learned and future opportunities[J]. Lancet Neurol202221(7):645-658.
11
McColgan P Thobhani A Boak L,et al. Tominersen in adults with manifest Huntington's disease[J]. N Engl J Med2023389(23):2203-2205.
12
Warby SC Montpetit A Hayden AR,et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup[J]. Am J Hum Genet200984(3):351-366.
13
Shin JW Shin A Park SS,et al. Haplotype-specific insertion-deletion variations for allele-specific targeting in Huntington's disease[J]. Mol Ther Methods Clin Dev202225:84-95.
14
Spronck EA Vallès A Lampen MH,et al. Intrastriatal administration of AAV5-miHTT in non-human Primates and rats is well tolerated and results in miHTT transgene expression in key areas of Huntington disease pathology[J]. Brain Sci202111(2):129.
15
UniQure. UniQure announces update on phase Ⅰ/Ⅱ clinical trials of AMT-130 gene therapy for the treatment of Huntington's disease[EB/OL]. (2023-12-19) [2024-01-26].
16
Keller CG Shin Y Monteys AM,et al. An orally available,brain penetrant,small molecule lowers huntingtin levels by enhancing pseudoexon inclusion[J]. Nat Commun202213(1):1150.
17
Therapeutics PTC. PIVOT-HD interim data update[EB/OL].(2023-06-01)[2024-01-26].
18
Estevez-Fraga C Tabrizi SJ Wild EJ. Huntington's disease clinical trials corner:November 2022[J]. J Huntingtons Dis202211(4):351-367.
19
Zhang L Wu TT Shan YY,et al. Therapeutic reversal of Huntington's disease by in vivo self-assembled siRNAs[J]. Brain2021144(11):3421-3435.
20
Monteys AM Ebanks SA Keiser MS,et al. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo [J]. Mol Ther201725(1):12-23.
21
Shin JW Hong EP Park SS,et al. PAM-altering SNP-based allele-specific CRISPR-Cas9 therapeutic strategies for Huntington's disease[J]. Mol Ther Methods Clin Dev202226:547-561.
22
Bravo JPK Liu MS Hibshman GN,et al. Structural basis for mismatch surveillance by CRISPR-Cas9[J]. Nature2022603(7900):343-347.
23
Oura S Noda T Morimura N,et al. Precise CAG repeat contraction in a Huntington's Disease mouse model is enabled by gene editing with SpCas9-NG[J]. Commun Biol20214(1):771.
24
Seo JH Shin JH Lee J,et al. DNA double-strand break-free CRISPR interference delays Huntington's disease progression in mice[J]. Commun Biol20236(1):466.
25
Gu XF Richman J Langfelder P,et al. Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice[J]. Neuron2022110(7):1173-1192.
26
Cox DBT Gootenberg JS Abudayyeh OO,et al. RNA editing with CRISPR-Cas13[J]. Science2017358(6366):1019-1027.
27
Molina Vargas AM Sinha S Osborn R,et al. New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity[J]. Nucleic Acids Res202452(2):921-939.
28
Morelli KH Wu Q Gosztyla ML,et al. An RNA-targeting CRISPR-Cas13d system alleviates disease-related phenotypes in Huntington's disease models[J]. Nat Neurosci202326(1):27-38.
29
Leibowitz ML Papathanasiou S Doerfler PA,et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing[J]. Nat Genet202153(6):895-905.
30
Tsuchida CA Brandes N Bueno R,et al. Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells[J]. Cell2023186(21):4567-4582.
31
Yan S Zheng X Lin YQ,et al. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease[J]. Nat Biomed Eng20237(5):629-646.
32
Coller BS. Ethics of human genome editing[J]. Annu Rev Med201970:289-305.
33
Yao XG Lyu P Yoo K,et al. Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing[J]. J Extracell Vesicles202110(5):e12076.
34
Rodrigues FB Byrne LM Tortelli R,et al. Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington's disease[J]. Sci Transl Med202012(574):eabc2888.
35
Caron NS Banos R Yanick C,et al. Mutant huntingtin is cleared from the brain via active mechanisms in Huntington disease[J]. J Neurosci202141(4):780-796.
36
Klinkmueller P Kronenbuerger M Miao XY,et al. Impaired response of cerebral oxygen metabolism to visual stimulation in Huntington's disease[J]. J Cereb Blood Flow Metab202141(5):1119-1130.
37
Liu HS Zhang CC Xu JD,et al. Huntingtin silencing delays onset and slows progression of Huntington's disease:a biomarker study[J]. Brain2021144(10):3101-3113.
38
Chan ST Mercaldo ND Ravina B,et al. Association of dilated perivascular spaces and disease severity in patients with Huntington disease[J]. Neurology202196(6):e890-e894.
39
Eide PK Lashkarivand A Pripp A,et al. Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders[J]. Nat Commun202314(1):2084.

基金

国家重点研发计划资助项目(2022YFA1104900;2022YFA1104904)
国家自然科学基金资助项目(82071255;82271266;82101330)
广东省神经系统疾病临床医学研究中心资助项目(2020B1111170002)
广东省神经疾病早期干预及功能修复研究国际科技合作基地资助项目(2020A0505020004)

评论

PDF(770 KB)

Accesses

Citation

Detail

段落导航
相关文章

/