脑肿瘤三维可视化模型自动重建技术的开发及临床应用

刘培龙, 蒋理, 谢延风, 詹彦, 邓博, 徐伟竣, 石全红

PDF(3610 KB)
PDF(3610 KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (04) : 471-477. DOI: 10.13406/j.cnki.cyxb.003476
临床研究

脑肿瘤三维可视化模型自动重建技术的开发及临床应用

作者信息 +

Development and clinical application of automatic reconstruction technology for a three-dimensional visualization model of brain tumors

Author information +
History +

摘要

目的 研究和开发一种基于头颅多模态核磁共振成像(magnetic resonance imaging,MRI)的影像学数据,自动重建常见脑肿瘤及其周围重要结构的三维可视化模型,并验证其效能及临床适用性。 方法 收集常见脑肿瘤头颅多模态核磁共振影像数据,并将其分为训练集、验证集和临床测试集。在训练及验证中,通过3D深度卷积神经网络的算法训练系统自动分割并重建出脑肿瘤及周围结构的能力;在临床测试集中分别用系统及人工手动的方法完成重建,比较本系统自动重建与手动重建之间的重建效率及图像质量。 结果 在完成1例肿瘤及周围结构一体化模型重建的时间花费上面,系统用时由人工用时的(5 442±623) s减少至(657±78) s,差异有统计学意义(t=27.530,P=0.000)。且系统重建出的模型与原始影像学图像具有高度一致性(Dice系数为0.92),系统重建出的图像与人工重建的图像在质量方面并无明显差异。 结论 基于多模态影像学数据,运用深度学习等算法对脑肿瘤及周围结构进行自动分割及全自动三维可视化重建,具有准确、高效、可靠的优点,对于脑肿瘤的诊断和手术计划的制定具有重要意义。

Abstract

Objective To study and develop a three-dimensional visualization model that automatically reconstructs common brain tumors and important structures around them based on multimodal magnetic resonance imaging(MRI) data of the head and to validate its performance and clinical applicability. Methods Multimodal MRI data of the head with common brain tumors were collected and divided into training set,validation set,and clinical testing set. In the training and verification sets,the system's ability to automatically segment and reconstruct brain tumors and surrounding structures was trained through the algorithm of 3D depth convolutional neural network. In the clinical testing set,the reconstruction was completed by the system and a human,respectively,and the reconstruction efficiency and image quality were compared between the two methods. Results The time spent on completing the integrated model reconstruction of a tumor and its surrounding structure was significantly reduced from 5442±623 seconds (by a human) to (657±78) seconds(by the system)(t=27.530,P=0.000). Meanwhile,the model reconstructed by the system had high consistency with the original image(Dice coefficient=0.92),and there was no significant difference in the image quality between the system and human reconstruction. Conclusion The automatic segmentation and fully automatic 3D visualization reconstruction of brain tumors and their surrounding structures using algorithms such as deep learning based on multimodal imaging data are accurate,efficient,and reliable,which is of great significance in the diagnosis of brain tumors and the formulation of surgical plans.

关键词

机器学习 / 多模态MRI / 脑肿瘤 / 三维可视化模型

Key words

machine learning / multimodal MRI / brain tumor / 3D visualization model

中图分类号

R651.1+9

引用本文

导出引用
刘培龙 , 蒋理 , 谢延风 , . 脑肿瘤三维可视化模型自动重建技术的开发及临床应用. 重庆医科大学学报. 2024, 49(04): 471-477 https://doi.org/10.13406/j.cnki.cyxb.003476
Liu Peilong, Jiang Li, Xie Yanfeng, et al. Development and clinical application of automatic reconstruction technology for a three-dimensional visualization model of brain tumors[J]. Journal of Chongqing Medical University. 2024, 49(04): 471-477 https://doi.org/10.13406/j.cnki.cyxb.003476

参考文献

1
Dimeco F Li KW Casali C,et al. Meningiomas invading the superior sagittal sinus:surgical experience in 108 cases[J]. Neurosurgery200862(6): 1124-1135.
2
Heros RC. Venous preservation[J]. J Neurosurg2013119(1):71-72.
3
Jui SL Zhang SC Xiong WL,et al. Brain MRI tumor segmentation with 3D intracranial structure deformation features[J]. IEEE Intell Syst201631(2):66-76.
4
Akkus Z Galimzianova A Hoogi A,et al. Deep learning for brain MRI segmentation:state of the art and future directions[J]. J Digit Imaging201730(4):449-459.
5
Virupakshappa, Amarapur B. Cognition-based MRI brain tumor segmentation technique using modified level set method[J]. Cogn Technol Work201921(3):357-369.
6
van Garderen KA van der Voort SR Versteeg A,et al. EASE:clinical implementation of automated tumor segmentation and volume quantification for adult low-grade glioma[J]. Front Med20218:738425.
7
Zhou M Scott J Chaudhury B,et al. Radiomics in brain tumor:image assessment,quantitative feature descriptors,and machine-learning approaches[J]. AJNR Am J Neuroradiol201839(2):208-216.
8
Shal K Choudhry MS. Evolution of deep learning algorithms for MRI-based brain tumor image segmentation[J]. Crit Rev Biomed Eng202149(1):77-94.
9
Clarke LP Velthuizen RP Clark M,et al. MRI measurement of brain tumor response:comparison of visual metric and automatic segmentation[J]. Magn Reson Imag199816(3):271-279.
10
Sun JW Chen W Peng ST,et al. DRRNet:dense residual refine networks for automatic brain tumor segmentation[J]. J Med Syst201943(7):221.
11
Menze BH Jakab A Bauer S,et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Trans Med Imaging201534(10):1993-2024.
12
Kofler F Berger C Waldmannstetter D,et al. BraTS toolkit:translating BraTS brain tumor segmentation algorithms into clinical and scientific practice[J]. Front Neurosci202014:125.
13
Šteňo A Hollý V Mendel P,et al. Navigated 3D-ultrasound versus conventional neuronavigation during awake resections of eloquent low-grade gliomas:a comparative study at a single institution[J]. Acta Neurochir2018160(2):331-342.
14
Hou XL Yang DD Li DJ,et al. A new simple brain segmentation method for extracerebral intracranial tumors[J]. PLoS One202015(4):e0230754.
15
Zhang F Noh T Juvekar P,et al. SlicerDMRI:diffusion MRI and tractography research software for brain cancer surgery planning and visualization[J]. JCO Clin Cancer Inform20204:299-309.
16
Isa IS Sulaiman SN Mustapha M,et al. Automatic contrast enhancement of brain MR images using Average Intensity Replacement based on Adaptive Histogram Equalization(AIR-AHE)[J]. Biocybern Biomed Eng201737(1):24-34.
17
Dill V Franco AR Pinho MS. Automated methods for hippocampus segmentation:the evolution and a review of the state of the art[J]. Neuroinformatics201513(2):133-150.
18
Saito T Rehmsmeier M. Precrec:fast and accurate precision-recall and ROC curve calculations in R[J]. Bioinformatics201733(1):145-147.
19
Hussain S Anwar SM Majid M. Segmentation of glioma tumors in brain using deep convolutional neural network[J]. Neurocomputing2018282:248-261.
20
Yang TJ Song JK Li L. A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI[J]. Biocybern Biomed Eng201939(3):613-623.
21
Li HC Li A Wang MH. A novel end-to-end brain tumor segmentation method using improved fully convolutional networks[J]. Comput Biol Med2019108:150-160.
22
Zhao XM Wu YH Song GD,et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation[J]. Med Image Anal201843:98-111.
23
Mert A Kiesel B Wöhrer A,et al. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas[J]. Neurosurg Focus201538(1):E4.
24
Guo YX Sun ZP Liu XJ,et al. Surgical safety distances in the infratemporal fossa:three-dimensional measurement study[J]. Int J Oral Maxillofac Surg201544(5):555-561.
25
Zhu ZQ Chai Y Yin HP,et al. A novel dictionary learning approach for multi-modality medical image fusion[J]. Neurocomputing2016214:471-482.
26
Kim YI Lee DH Cho CB,et al. The usefulness of dual-volume visualization (three-dimensional digital subtraction angiography and cross-sectional imaging) for surgical planning in treating intracranial meningiomas:a case series and technical report[J]. World Neurosurg2019122:e59-e66.
27
Su JH Ba YY Liang ST,et al. Type Ⅲ intraosseous meningioma invading superior sagittal sinus and skull periosteum[J]. J Craniofac Surg201930(6):e561-e563.
28
Fick T van Doormaal JAM Tosic L,et al. Fully automatic brain tumor segmentation for 3D evaluation in augmented reality[J]. Neurosurg Focus202151(2):E14.
29
Kanaly CW Ding DL Mehta AI,et al. A novel method for volumetric MRI response assessment of enhancing brain tumors[J]. PLoS One20116(1):e16031.

基金

重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0152)

评论

PDF(3610 KB)

Accesses

Citation

Detail

段落导航
相关文章

/