可降解高分子骨钉研究进展

吴天宇, 崔洋, 游祥铭, 尹晴, 吴迪, 任琪, 叶海木

PDF(700 KB)
PDF(700 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (03) : 181-186. DOI: 10.15925/j.cnki.issn1005-3360.2025.03.032
综述

可降解高分子骨钉研究进展

作者信息 +

Research Progress on Biodegradable Polymer Bone Screws

Author information +
History +

摘要

随着人口老龄化加剧,我国骨科疾病发病率显著上升,对骨钉的需求也日益增加。传统金属骨钉虽应用广泛,但存在术后影响骨骼恢复、愈合后需二次手术取出等问题。近年来,新型生物可降解骨钉凭借良好的生物相容性和可降解性逐渐受到关注。文章综述主流可降解高分子骨钉材料的研究进展,重点探讨不同材料的性能、制备方法及临床应用潜力,并展望未来发展方向,以期为后续研究和应用提供参考。

Abstract

With the intensification of population aging, the incidence of orthopedic diseases in our country has significantly increased, leading to a growing demand for bone screws. Although traditional metal bone screws are widely used, they have drawbacks such as interfering with bone recovery after surgery and requiring a second operation for removal after healing. In recent years, novel biodegradable bone screws have gradually gained attention due to their good biocompatibility and degradability. The paper reviews the research progress of mainstream biodegradable polymer bone screws, focusing on the properties, preparation methods, and clinical application potential of different materials, and looks forward to future development directions, in order to provide references for subsequent research and applications.

关键词

骨钉 / 可降解 / 高分子材料 / 力学性能

Key words

Bone screws / Biodegradable / Polymer materials / Mechanical properties

中图分类号

TQ32

引用本文

导出引用
吴天宇 , 崔洋 , 游祥铭 , . 可降解高分子骨钉研究进展. 塑料科技. 2025, 53(03): 181-186 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.032
WU Tianyu, CUI Yang, YOU Xiangming, et al. Research Progress on Biodegradable Polymer Bone Screws[J]. Plastics Science and Technology. 2025, 53(03): 181-186 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.032

参考文献

1
马金竹,董双鹏,张述,等.从国家抽验中看“金属接骨板、金属接骨螺钉”存在的问题[J].中国医疗器械信息,2015,21(6):19-22.
2
叶焱,孟祥泽,唐国烁,等.高分子材料的生物降解性能表征[J].高分子学报,2023,54(9):1363-1384.
3
CHANLALIT C, SHUKLA D R, FITZSIMMONS J S, et al. Stress shielding around radial head prostheses[J]. The Journal of Hand Surgery, 2012, 37(10): 2118-25.
4
何会霞.重组胶原蛋白及其生物材料的制备和性质研究[D].兰州:兰州大学,2023.
5
HOU X, SITTHISANG S, SONG B, et al. Entropically Toughened Robust Biodegradable Polymer Blends and Composites for Bone Tissue Engineering[J]. ACS Applied Materials & Interfaces, 2024, 16(2): 2912-2920.
6
SEAL B L, OTERO T C, PANITCH A. Polymeric biomaterials for tissue and organ regeneration[J]. Materials Science and Engineering: R: Reports, 2001, 34(4): 147-230.
7
MANO J F, SOUSA R A, BOESEL L F, et al. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments[J]. Composites Science and Technology, 2004, 64(6): 789-817.
8
GRIFFITH L G. Polymeric biomaterials[J]. Acta Materialia, 2000, 48(1): 263-277.
9
REZWAN K, CHEN Q Z, BLAKER J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(18): 3413-3431.
10
VERT M, LI S M, SPENLEHAUER G, et al. Bioresorbability and biocompatibility of aliphatic polyesters[J]. Journal of Materials Science: Materials in Medicine, 1992, 3(6): 432-446.
11
陈中碧,郭盛,张秀刚,等.聚乳酸耐热改性的研究进展[J].塑料科技,2024,52(6):138-143.
12
张宗飞,王锦玉,谢鸿洲,等.可降解塑料的发展现状及趋势[J].化肥设计,2021,59(6):10-14, 41.
13
陆腱,李宏,刘桂连,等.HAp增强PLA纤维基人工韧带的骨细胞活性研究[J].合成纤维工业,2022,45(5):11-16.
14
黄彦东,吴若菲,储艳秋,等.α-氨基酸及其酯化物侧链对其β-环糊精复合物稳定常数的影响[J].高等学校化学学报,2017,38(5):743-751.
15
谢欣,张凯旋,陈辛元,等.可用于保乳手术瘤床标记物的生物可降解材料的筛选研究[J].中国生物医学工程学报,2022,41(5):636-640.
16
王曙东.三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J].纺织学报,2022,43(12):16-21.
17
邢璐,李博宁,肖本好,等.医用聚乳酸材料性能及加工方法研究进展[J].高分子材料科学与工程,2023,39(6):167-174.
18
王桂森.聚多巴胺/聚乳酸涂层改性硅酸钙陶瓷支架的性能研究[J].电加工与模具,2023():50-54.
增刊1
19
彭鑫,彭中华,谭奇超,等.骨组织工程学中复合支架及其应用研究进展[J].医学综述,2022,28(13):2548-2554.
20
刘岩,伍林招,刘楠楠,等.3D打印技术构建不同比例PLA/TiO2复合支架及其性能评估[J].福建医药杂志,2023,45(2):107-110.
21
廖祝胜,王利强.聚乙烯膜的卵磷脂改性及表面性能研究[J].功能材料,2018,49(3):3140-3145.
22
夏开国,沈旭东,侯冰冰,等.可降解输尿管支架及其涂层的研究进展[J].安徽医科大学学报,2023,58(1):166-169.
23
陈安琪,吴清霖,吴勇敏,等.PLA/PVPGEL复合支架对MC3T3E1细胞生物学行为的影响及成骨性能的初探[J].口腔生物医学,2022,13(4):234-240.
24
SAJINI T, THOMAS R, MATHEW B. Computational design and fabrication of enantioselective recognition sorbents for L-phenylalanine benzyl ester on multiwalled carbon nanotubes using molecular imprinting technology[J]. Chinese Journal of Polymer Science,2019, 37(12): 1305-1318.
25
REED A M, GILDING D K. Biodegradable polymers for use in surgery—Poly(glycolic)/poly(Iactic acid) homo and copolymers: 2. In vitro degradation[J]. Polymer, 1981, 22(4): 494-498.
26
钱振超,王睿,龚润东.聚乙醇酸的合成及其在生物医学领域的研究进展[J].塑料科技,2023,51(6):118-123.
27
梅书.TY-2型钛系催化剂在聚酯生产中的应用和优化[J].聚酯工业,2020,33(1):40-42.
28
马超,马兰荣,魏辽,等.聚乙醇酸材料的加工改性及其水下降解特性的研究进展[J].中国塑料,2022,36(9):74-84.
29
TAN L, YU X, WAN P, et al. Biodegradable materials for bone repairs: A review[J]. Journal of Materials Science & Technology, 2013, 29(6): 503-513.
30
ATHANASIOU K A, NIEDERAUER G G, AGRAWAL C M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers[J]. Biomaterials, 1996, 17(2): 93-102.
31
MCVICAR I, HATTON P V, BROOK I M. Self-reinforced polyglycolic acid membrane: A bioresorbable material for orbital floor repair. Initial clinical repor[J]. British Journal of Oral and Maxillofacial Surgery, 1995, 33(4): 220-223.
32
MAURUS P B, KAEDING C C. Bioabsorbable implant material review[J]. Operative Techniques in Sports Medicine, 2004, 12(3): 158-160.
33
TÖRMÄLÄ P. Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties[J]. Clinical Materials, 1992, 10(1/2): 29-34.
34
MA P X, ZHANG R, XIAO G, et al. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds[J]. Journal of Biomedical Materials Research, 2001, 54(2): 284-293.
35
LINHART W, PETERS F, LEHMANN W, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution material [J]. Journal of Biomedical Materials REsearch, 2001, 54(2): 162-171.
36
SILVA A T C R, CARDOSO B C O, SILVA M E S RE, et al. Synthesis, characterization, and study of PLGA copolymer in vitro degradation[J]. Journal of Biomaterials and Nanobiotechnology, 2015, DOI: 10.4236/jbnb.2015.61002.
37
MARTINS C, SOUSA F, ARAUJO F, et al. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications[J]. Advanced Healthcare Materials, 2018, 7(1): 1701035.
38
UHRICH K E, CANNIZZARO S M, LANGER R S, et al. Polymeric systems for controlled drug release[J]. Chemical Reviews, 1999, 99(11): 3181-3198.
39
WU X S, WANG N J J O B S, POLYMER EDITION. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation[J]. J Biomater Sci Polym Ed, 2001, 12(1): 21-34.
40
ERBETTA C D A C, ALVES R J, MAGALH J, et al. Synthesis and characterization of poly(D, L-lactide-co-glycolide) copolymer[J]. Journal of Biomaterials and Nanobiotechnology, 2012, DOI: 10.4236/jbnb.2012.32027.
41
KAIHARA S, MATSUMURA S, MIKOS A G, et al. Synthesis of poly (L-lactide) and polyglycolide by ring-opening polymerization[J]. Nat Protoc, 2007, 2(11): 2767-2771.
42
MAADANI A M, SALAHINEJAD E J J O C R. Performance comparison of PLA-and PLGA-coated porous bioceramic scaffolds: Mechanical, biodegradability, bioactivity, delivery and biocompatibility assessments[J]. Journal of Controlled Release, 2022, 351: 1-7.
43
VROMAN I, TIGHZERT L J M. Biodegradable polymers[J]. Materials, 2009, 2(2): 307-344.
44
赵莉,何晨光,高永娟,等.PLGA的不同组成对支架材料性能的影响研究[J].中国生物工程杂志,2008,28(5):22-28.
45
AMOYAV B, BENNY O J P. Microfluidic based fabrication and characterization of highly porous polymeric microspheres[J]. Polymers, 2019, 11(3): 419.
46
LU Y, CHENG D, NIU B, et al. Properties of poly (lactic-co-glycolic acid) and progress of poly (lactic-co-glycolic acid)-based biodegradable materials in biomedical research[J]. Pharmaceuticals, 2023, 16(3): 454.
47
KOERNER J, HORVATH D, GROETTRUP M J F I I. Harnessing dendritic cells for poly (D, L-lactide-co-glycolide) microspheres (PLGA MS)—Mediated anti-tumor therapy[J]. Front Immunol, 2019, 10: 707.
48
GENTILE P, CHIONO V, CARMAGNOLA I, et al. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering[J]. International Journal of Molecular Sciences, 2014, 15(3): 3640-3659.
49
MAKADIA H K, SIEGEL S J J P. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers (Basel), 2011, 3(3): 1377-1397.
50
孙浩,郭超,张娟,等.骨组织工程用PLGA多孔支架的制备及细胞毒性研究[J].化工时刊,2005(10):3-6.
51
PASSERINI N, CRAIG D J J O C R. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC[J]. J Control Release, 2001, 73(1): 111-115.
52
刘竞龙,余斌,高成杰.骨组织工程材料修复骨缺损:大鼠成骨细胞与聚乳酸和聚乙醇酸共聚合物支架联合培养观察[J].中国临床康复,2002(16):2371-2379.
53
蔡晴,贝建中,王身国,等.乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究[J].功能高分子学报,2000(3):249-254.
54
李敏,张厚安,李茂华,等.HA/PLGA复合材料的凝胶浇铸法制备工艺研究[J].矿冶工程,2008(2):94-96.
55
JOSE M V, THOMAS V, JOHNSON K T, et al. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering[J]. Acta Biomaterialia, 2009, 5(1): 305-315.
56
NAIK A, SHEPHERD D V, SHEPHERD J H, et al. The effect of the type of HA on the degradation of PLGA/HA composites[J]. Materials Science and Engineering: C, 2017, 70: 824-831.
57
NATTA F J V, HILL J W, CAROTHERS W H J J O T A C S. Studies of polymerization and ring formation. XXIII. 1 ε-Caprolactone and its polymers[J]. Journal of the American Chemical Society, 1934, 56(2): 455-457.
58
WOODRUFF M A, HUTMACHER D W J P I P S. The return of a forgotten polymer—Polycaprolactone in the 21st century[J]. Progress in Polymer Science, 2010, 35(10): 1217-1256.
59
PATRICIO T, DOMINGOS M, GLORIA A, et al. Characterisation of PCL and PCL/PLA scaffolds for tissue engineering[J]. Procedia CIRP, 2013, 5: 110-114.
60
杨湘俊,陈俊宇,朱舟,等.PCL基复合骨组织工程支架研究现状及发展[J].中国生物医学工程学报,2021,40(4):485-492.
61
MONTGOMERY S R, JOHNSON J S, MCALLISTER D R, et al. Surgical management of PCL injuries: Indications, techniques, and outcomes[J]. Current Reviews in Musculoskeletal Medicine, 2013, 6: 115-123.
62
LABET M, THIELEMANS W J C S R. Synthesis of polycaprolactone: A review[J]. Chem Soc Rev, 2009, 38(12): 3484-3504.
63
ENGELBERG I, KOHN J J B. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study[J]. Biomaterials, 1991, 12(3): 292-304.
64
MALIKMAMMADOV E, TANIR T E, KIZILTAY A, et al. PCL and PCL-based materials in biomedical applications[J]. J Biomater Sci Polym Ed, 2018, 29(7/9): 863-893.
65
彭博.聚酯骨支架的力学性能改善与生物活性增强机理研究[D].长沙:中南大学,2022.
66
张本妥,杨昕.人工生物材料在关节软骨损伤修复中的应用[J].中国组织工程研究,2024,28(10):1599-1605.
67
HE Y, LIU W, GUAN L, et al. A 3D-printed PLCL scaffold coated with collagen type I and its biocompatibility[J]. Biomed Res Int, 2018, DOI:10.1155/2018/5147156.
68
李子慧,张永禄,李博.聚对二氧环己酮嵌段共聚物的合成及性能研究[J].杭州师范大学学报:自然科学版,2023,22(1):8-12.
69
朱金唐,吴鹏飞,崔欣,等.聚对二氧环己酮(PPDO)熔融加工性能研究[J].纺织科学研究,2023(6):40-44.
70
PEZZIN A P T, VAN EKENSTEIN G O R A, ZAVAGLIA C A C, et al. Poly(para-dioxanone) and poly(L-lactic acid) blends: Thermal, mechanical, and morphological properties[J]. Journal of Applied Polymer Science, 2003, 88(12): 2744-2755.
71
王哲存,熊成东,李庆.聚对二氧环己酮的合成及其结晶性能[J].合成化学,2015,23(10):974-976, 979.
72
BAI W, CHEN D, LI Q, et al. In vitro hydrolytic degradation of poly(para-dioxanone) with high molecular weight[J]. Journal of Polymer Research, 2009, 16(5): 471-480.
73
BAI W, ZHANG L-F, LI Q, et al. In vitro hydrolytic degradation of poly(para-dioxanone)/poly(D,L-lactide) blends[J]. Materials Chemistry and Physics, 2010, 122(1): 79-86.
74
BAI W, CHEN D, ZHANG Z, et al. Poly(para-dioxanone)/inorganic particle composites as a novel biomaterial[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2009, 90(2): 945-951.

基金

国家自然科学基金项目(52203030)
中国石油大学(北京)科研基金(2462022BJRC008)

评论

PDF(700 KB)

Accesses

Citation

Detail

段落导航
相关文章

/