生物基阻燃剂在高分子材料阻燃领域中的应用研究进展

王刚, 袁博, 贾蕊汀, 杨旭, 刘爱云, 刘珂, 侯侠

PDF(2465 KB)
PDF(2465 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (03) : 168-175. DOI: 10.15925/j.cnki.issn1005-3360.2025.03.030
综述

生物基阻燃剂在高分子材料阻燃领域中的应用研究进展

作者信息 +

Application Research Progress in Bio-based Flame Retardants in Flame Retardants Field of Polymer Materials

Author information +
History +

摘要

生物基阻燃剂富含氨基、羧基、羟基和不饱和键等众多官能团,能够通过多种功能化反应引入阻燃元素,具有良好的成炭性,因其高效低毒、绿色环保、可再生等特性而备受关注。根据生物基原料的来源不同,生物基阻燃剂分为生物酸类阻燃剂、生物酚类阻燃剂、生物醛类阻燃剂、壳聚糖类阻燃剂和木质素类阻燃剂。文章综述生物基阻燃剂在高分子材料中的应用及合成方法,探讨其阻燃性能,对生物基阻燃剂的不足之处和未来的发展进行展望,指出未来生物基阻燃剂的发展应立足于性能提升、多功能集成、降低成本、协同作用和环境友好方向。

Abstract

Bio-based flame retardants are rich in a variety of functional groups such as amino, carboxyl, hydroxyl, and unsaturated bonds. These functional groups enable the introduction of flame-retardant elements through multiple functionalization reactions. Bio-based flame retardants also exhibit good char-forming properties. They have garnered significant attention due to their high efficiency, low toxicity, environmental friendliness, and renewability. Depending on the source of the bio-based raw materials, bio-based flame retardants can be classified into bio-acid flame retardants, bio-phenol flame retardants, bio-aldehyde flame retardants, chitosan flame retardants, and lignin flame retardants. The article reviews the applications and synthesis methods of bio-based flame retardants in polymeric materials, discusses their flame-retardant properties, and provides an outlook on the limitations and future development of bio-based flame retardants. It points out that the future development of bio-based flame retardants should focus on improving performance, integrating multiple functions, reducing costs, enhancing synergistic effects, and promoting environmental friendliness.

关键词

生物基阻燃剂 / 高分子材料 / 可再生 / 绿色环保

Key words

Bio-based flame retardants / Polymer materials / Renewable / Green and environmental protection

中图分类号

TQ314.24

引用本文

导出引用
王刚 , 袁博 , 贾蕊汀 , . 生物基阻燃剂在高分子材料阻燃领域中的应用研究进展. 塑料科技. 2025, 53(03): 168-175 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.030
WANG Gang, YUAN Bo, JIA Ruiting, et al. Application Research Progress in Bio-based Flame Retardants in Flame Retardants Field of Polymer Materials[J]. Plastics Science and Technology. 2025, 53(03): 168-175 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.030

参考文献

1
GONG X F, LI Y J, WANG D, et al. Process-biomimetic macromolecular materials for in vivo applications[J]. Progress in Materials Science, 2022, 131: 101015.
2
WANG H, JI X F, LI Z T, et al. Fluorescent supramolecular polymeric materials[J]. Advanced Materials, 2017, 29(14): 1606117.
3
WANG J F, ZHANG D H, CHU F X. Wood-derived functional polymeric materials[J]. Advanced Materials, 2020, 33(28): 2001135.
4
DOGAN M, DOGAN S D, SAVAS L A, et al. Flame retardant effect of boron compounds in polymeric materials[J]. Composites Part B: Engineering, 2021, 222: 109088.
5
LIU B W, ZHAO H B, WANG Y Z. Advanced flame-retardant methods for polymeric materials[J]. Advanced Materials, 2021, 34(46): 2107905.
6
ZHANG J, LI Z, QI X L, et al. Recent progress on metal-organic framework and its derivatives as novel fire retardants to polymeric materials[J]. Nano-Micro Letters, 2020, 12: 173.
7
CHANG S, ZHOU X, XING Z Q, et al. Probing polarity of flame retardants and correlating with interaction between flame retardants and PET fiber[J]. Journal of Colloid and Interface Science, 2017, 498: 343-350.
8
OSIMITZ T G, KACEW S, HAYES A W. Assess flame retardants with care[J]. Science, 2019, 365(6457): 992-993.
9
ZHOU X, QIU S L, MU X W, et al. Polyphosphazenes-based flame retardants: A review[J]. Composites Part B: Engineering, 2020, 202: 108397.
10
MARTINEZ G, NIU J, TAKSER L, et al. A review on the analytical procedures of halogenated flame retardants by gas chromatography coupled with single quadrupole mass spectrometry and their levels in human samples[J]. Environmental Pollution, 2021, 285: 117476.
11
ABE F R, DE OLIVEIRA A Á S, MARINO R V, et al. A comparison of developmental toxicity of brominated and halogen-free flame retardant on zebrafish[J]. Ecotoxicology and Environmental Safety, 2020, 208: 111745.
12
楼高波,张恒,饶青青,等.生物基阻燃剂在环氧树脂中的应用研究进展[J].林业工程学报,2023,8(5):13-26.
13
COSTES L, LAOUTID F, BROHEZ S, et al. Bio-based flame retardants: When nature meets fire protection[J]. Materials Science and Engineering: R: Reports, 2017, 117: 1-25.
14
DONG F H, WANG Y Q, WANG S B, et al. Flame-retarded polyurethane foam conferred by a bio-based nitrogen‑phosphorus-containing flame retardant[J]. Reactive & Functional Polymers, 2021, 168: 105057.
15
TAIB M N A M, ANTOV P, SAVOV V, et al. Current progress of biopolymer-based flame retardant[J]. Polymer Degradation and Stability, 2022, 205: 110153.
16
WANG X Y, YANG G C, GUO H W. Tannic acid as biobased flame retardants: A review[J]. Journal of Analytical and Applied Pyrolysis, 2023, 174: 106111.
17
FENG Y J, ZHOU Y, LI D K, et al. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric[J]. Carbohydrate Polymers, 2017, 175: 636-644.
18
LIU Y, ZHANG A S, CHENG Y M, et al. Recent advances in biomass phytic acid flame retardants[J]. Polymer Testing, 2023, 124: 108100.
19
SHANG S, YUAN B H, SUN Y R, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology[J]. Journal of Colloid and Interface Science, 2019, 553: 364-371.
20
CHENG X W, GUAN J P, TANG R C, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric[J]. Journal of Cleaner Production, 2016, 124: 114-119.
21
ZHU W J, YANG M Y, HUANG H, et al. A phytic acid-based chelating coordination embedding structure of phosphorus-boron-nitride synergistic flame retardant to enhance durability and flame retardancy of cotton[J]. Cellulose, 2020, 27: 4817-4829.
22
GAO Y Y, DENG C, DU Y Y, et al. A novel bio-based flame retardant for polypropylene from phytic acid[J]. Polymer Degradation and Stability, 2019, 161: 298-308.
23
WANG D, WANG Y, LI T, et al. A bio-based flame-retardant starch based on phytic acid[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10265-10274.
24
CHENG X W, GUAN J P, YANG X H, et al. A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric[J]. Journal of Cleaner Production, 2019, 223: 342-349.
25
ASO Y, SANO M, YADA R, et al. Biobased poly(itaconic acid-co-10-hydroxyhexylitaconic acid)s: Synthesis and thermal characterization[J]. Materials, 2020, 13(12): 2707.
26
KAUR G, MAESEN M, GARCIA-GONZALEZ L, et al. Novel intensified back extraction process for itaconic acid: Toward in situ product recovery for itaconic acid fermentation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7199-8062.
27
TURNER R, CORDES T, WALLACE M. Itaconate trims the fat[J]. Nature Metabolism, 2023, 5: 915-916.
28
MA S Q, LIU X Q, JIANG Y H, et al. Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid[J]. Science China Chemistry, 2013, 57: 379-388.
29
HUANG Y S, ZHOU Q F, LI L P, et al. Construction of waterborne flame-retardant itaconate-based unsaturated polyesters and application for UV-curable hybrid coatings on wood[J]. Progress in Organic Coatings, 2023, 183: 107826.
30
NITBANI F O, TJITDA P J P, WOGO H E, et al. Preparation of ricinoleic acid from castor oil:A review[J]. Journal of Oleo Science, 2022, 71(6): 781-793.
31
KAUR R, KUMAR M. Addition of anti-flaming agents in castor oil based rigid polyurethane foams: Studies on mechanical and flammable behaviour[J]. Materials Research Express, 2020, 7(1): 015333.
32
GODA E S, YOON K R, EL-SAYED S H, et al. Halloysite nanotubes as smart flame retardants: A review[J]. Thermochimica Acta, 2018, 669: 173-184.
33
MAO W, LI S H, YANG X J, et al. Preparation of a flame-retardant epoxy curing agent based on castor oil and study on the curing reaction kinetics[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130: 2113-2121.
34
BODOIRA R, CECILIA CITTADINI M, VELEZ A, et al. An overview on extraction, composition, bioactivity and food applications of peanut phenolics[J]. Food Chemistry, 2022, 381: 132250.
35
COSME P, RODRíGUEZ A B, ESPINO J, et al. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications[J]. Antioxidants, 2020, 9(12): 1263.
36
GUO Z H, XIE W S, LU J S, et al. Tannic acid-based metal phenolic networks for bio-applications: A review[J]. Journal of Materials Chemistry B, 2021, 9: 4098-4110.
37
SHI Y, KAMER P C J, COLE-HAMILTON D J. Synthesis of pharmaceutical drugs from cardanol derived from cashew nut shell liquid[J]. Green Chemistry, 2019, 21(5): 1043-1053.
38
WANG X, NIU H X, GUO W W, et al. Cardanol as a versatile platform for fabrication of bio-based flame-retardant epoxy thermosets as DGEBA substitutes[J]. Chemical Engineering Journal, 2021, 421: 129738.
39
ZHONG J, HUANG Y S, CHEN Y T, et al. Synthesis of eugenol-modified epoxy resin and application on wood flame retardant coating[J]. Industrial Crops and Products, 2022, 183: 114979.
40
POURCHET S, SONNIER R, BEN-ABDELKADER M, et al. New reactive isoeugenol based phosphate flame retardant: Toward green epoxy resins[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14074-14088.
41
DUAN B R, WANG Q J, WANG X, et al. Flame retardance of leather with flame retardant added in retanning process[J]. Results in Physics, 2019, 15: 102717.
42
KARASEVA V, BERGERET A, LACOSTE C, et al. New biosourced flame retardant agents based on gallic and ellagic acids for epoxy resins[J]. Molecules, 2019, 24(23): 4305.
43
EDE-CINTESUN E, ÇATAK J, ATEŞ E, et al. Glyoxal and methylglyoxal formation in chocolate and their bioaccessibility[J]. Food Research International, 2024, 189: 114552.
44
ZHOU J P, CHEN Z, WANG Y. Bioaldehydes and beyond: Expanding the realm of bioderived chemicals using biogenic aldehydes as platforms[J]. Current Opinion in Chemical Biology, 2020, 59: 37-46.
45
KUNJAPUR A M, PRATHER K L J. Development of a vanillate biosensor for the vanillin biosynthesis pathway in E. coli [J]. ACS Synthetic Biology, 2019, 8(9): 1958-2193.
46
YU Y, CHEN J L, DING A X, et al. Synthesis of a novel P/N-triazine-containing ring flame retardant and its application in epoxy resin[J]. Polymers, 2024, 16(7): 871.
47
TAO P H, CHEN L M, ZENG S H, et al. Synthesis of bio-based reactive N/P flame retardant and its curing and flame retarding behavior in epoxy resins[J]. Journal of Applied Polymer Science, 2023, 141(8): 54974.
48
WANG Z M, WANG J S, ZHANG X K, et al. Evaluation of O-vanillin derived schiff-base intumescent flame retardants in epoxy resin applications: Flame retardancy, smoke emission, and mechanical property[J]. Reactive & Functional Polymers, 2023, 192: 105721.
49
MOLINA-GUTIéRREZ S, LADMIRAL V, BONGIOVANNI R, et al. Emulsion polymerization of dihydroeugenol-, eugenol-, and isoeugenol-derived methacrylates[J]. Industrial & Engineering Chemistry Research, 2019, 58(46): 21155-21164.
50
LU W M, JIN Z F. Synthesis of phosphorus/nitrogen containing intumescent flame retardants from p-hydroxybenzaldehyde, vanillin and syringaldehyde for rigid polyurethane foams[J]. Polymer Degradation and Stability, 2021, 195: 109768.
51
CHEN W X, LIU H B, YAN Q M, et al. Straightforward synthesis of novel chitosan bio-based flame retardants and their application to epoxy resin flame retardancy[J]. Composites Communications, 2024, 48: 101949.
52
LIU X D, GU X Y, SUN J, et al. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane[J]. Carbohydrate Polymers, 2017, 167: 356-363.
53
PRABHAKAR M N, RAGHAVENDRA G M, VIJAYKUMAR B V D, et al. Synthesis of a novel compound based on chitosan and ammonium polyphosphate for flame retardancy applications[J]. Cellulose, 2019, 26: 8801-8812.
54
CHEN R, LUO Z J, YU X J, et al. Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin[J]. Carbohydrate Polymers, 2020, 245: 116530.
55
YE J Q, YU W L, GE J, et al. Modification of PLA fibers with novel chitosan-based flame retardants by centrifugal melt electrospinning[J]. Materials Today Communications, 2024, 38: 108353.
56
HUANG Z, LI S H, TSAI L C, et al. Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan[J]. Materials Today Communications, 2022, 33: 104689.
57
YANG H T, YU B, XU X D, et al. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials[J]. Green Chemistry, 2020, 22(7): 2129-2161.
58
YAO T Y, YANG R H, SUN C, et al. Pyrolysis kinetics of lignin-based flame retardants containing mofs structure for epoxy resins[J]. Molecules, 2023, 28(6): 2699.
59
ZHANG D Q, ZENG J, LIU W F, et al. Pristine lignin as a flame retardant in flexible PU foam[J]. Green Chemistry, 2021, 23(16): 5972-5980.
60
DAI P, LIANG M K, MA X F, et al. Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin[J]. ACS Omega, 2020, 5(49): 32084-32093.
61
ZHANG Y M, ZHAO Q, LI L, et al. Synthesis of a lignin-based phosphorus-containing flame retardant and its application in polyurethane[J]. RSC Advances, 2018, 8(56): 32252-32261.
62
MATSUSHITA Y, HIRANO D, AOKI D, et al. A biobased flame‐retardant resin based on lignin[J]. Advanced Sustainable Systems, 2017, 1(10): 1700073.
63
LIANG X X, HU Q X, WANG X, et al. Thermal kinetics of a lignin-based flame retardant[J]. Polymers, 2020, 12(9): 2123.

基金

绿色化工新材料科研创新团队(兰石化大学校发[2023]201号)

评论

PDF(2465 KB)

Accesses

Citation

Detail

段落导航
相关文章

/