
基于温度场分析PA6熔融打印翘曲和分层机理
张丹, 崔群
基于温度场分析PA6熔融打印翘曲和分层机理
Analysis of Warping and Delaminating Mechanism of PA6 Melt Printing Based on Temperature Field
利用熔融沉积成型(FDM)技术打印聚酰胺6(PA6)材料时,普遍存在打印结构发生翘曲和分层的问题,严重影响产品的质量。为分析PA6熔融沉积过程中翘曲和分层的原因,通过编写双椭球热源模型子程序Dflux,采用有限元仿真方法模拟PA6熔融沉积并结合单因素实验方案,分析打印喷头温度和打印速度对双层结构熔融成型过程中温度场的影响,进而探究PA6发生翘曲和分层的机理。结果表明:当熔融的PA6被挤出沉积时,材料开始冷却和收缩,导致打印层的收缩不均匀,不同程度的收缩会导致结构变形。其中,打印喷头温度对翘曲和分层的影响比打印速度明显。打印喷头温度越低,打印速度越快,结构越不容易发生分层。较低的打印喷头温度会使结构发生翘曲变形。
When printing Polyamide 6 (PA6) material using Fused Deposition Modeling (FDM) technology, warping and delamination of the printed structure are common issues that severely affect product quality. To analyze the causes of warping and delamination during the FDM process of PA6, a subroutine for a dual-ellipsoid heat source model, Dflux, was developed. Finite element simulation was used to model the FDM process of PA6, combined with a single-factor experimental scheme, to investigate the effects of nozzle temperature and printing speed on the temperature field during the melting and forming process of a double-layer structure. The study aimed to explore the mechanisms of warping and delamination in PA6. The results indicated that when molten PA6 is extruded and deposited, the material begins to cool and contract, leading to uneven shrinkage of the printed layers. This uneven shrinkage causes structural deformation. Among the factors studied, the nozzle temperature has a more significant impact on warping and delamination than the printing speed. Lower nozzle temperatures and higher printing speeds tend to reduce the likelihood of delamination. However, excessively low nozzle temperatures can lead to warping deformation of the structure.
PA6 / Warping / Delaminating / Finite element simulation / Temperature field
TQ323.6 / TP391.73
1 |
|
2 |
李薇,王宜萍.聚酰胺/二氧化硅复合膜的制备及力学性能研究[J].塑料科技,2021,49(12):55-58.
|
3 |
温帅,王涌烽,何俊灏,等.拉伸力场对聚苯乙烯/聚酰胺6共混物泡沫隔热性能的影响[J].塑料科技,2021,49(11):12-15.
|
4 |
陶磊,常程,赵柯嘉,等.聚酰胺6热塑性弹性体的合成与表征[J].塑料工业,2024,52(2):145-152.
|
5 |
|
6 |
|
7 |
|
8 |
朱存彬,张叶,王倩,等.芳香族聚酰胺合成及改性研究进展[J].塑料科技,2022,50(6):124-128.
|
9 |
唐鹿.3D打印聚酰胺材料的研究进展[J].化工新型材料,2021,49(1):28-31, 36.
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
党鹏飞,常健,于华涛,等.不同激振力下碳纤维复合材料叶片振动特性的研究[J].塑料科技,2024,52(5):76-80.
|
20 |
陈文,徐小兵,李增超,等.基于CAE和正交试验的工艺参数对翘曲变形的研究[J].塑料科技,2019,47(6):99-102.
|
21 |
黄海龙.基于BP神经网络的双色塑件翘曲变形量预测[J].塑料科技,2019,47(6):68-71.
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
申玄伟.熔融沉积成型3D打印中翘曲变形的仿真分析与状态识别方法研究[D].杭州:浙江大学,2018.
|
28 |
|
29 |
|
30 |
|
/
〈 |
|
〉 |