短切玻璃纤维复合材料有限元模拟及其随机分布快速生成算法

喻九阳, 张天义, 刘博文, 马琳伟, 杨培炎

PDF(8659 KB)
PDF(8659 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (03) : 121-128. DOI: 10.15925/j.cnki.issn1005-3360.2025.03.022
计算机辅助技术

短切玻璃纤维复合材料有限元模拟及其随机分布快速生成算法

作者信息 +

Finite Element Simulation of Short-chopped Glass Fiber Composites and a Fast Generation Algorithm for Their Random Distribution

Author information +
History +

摘要

复合材料的剪切、横向力学性能以及耐久性在很大程度上取决于纤维与基体的界面强度。复合材料界面强度通常依赖纤维和树脂基体的大小、形状、性质和空间分布。文章提出一种适用于复合材料的数值模拟计算方法,选择短切玻璃纤维复合材料为研究对象进行有限元模拟计算,对纤维的随机分布提供一种快速生成算法,分析短切玻璃纤维长度对片状模塑料力学性能的影响。结果表明,短切玻璃纤维片状模塑料弹性模量随纤维长度的增大出现先增大后变缓的趋势,通过比较随机结构和规则结构说明计算方法合理性,纤维分布的随机性对复合材料宏观弹性常数的影响较小。

Abstract

The shear, transverse mechanical properties, and durability of composite materials largely depend on the interfacial strength between the fibers and the matrix. The interfacial strength of composites typically relies on the size, shape, properties, and spatial distribution of the fibers and resin matrix. The paper proposes a numerical simulation method suitable for composite materials. Short-chopped glass fiber composites were chosen as the research object for finite element simulation. A fast generation algorithm for the random distribution of fibers is provided, and the influence of short-chopped glass fiber length on the mechanical properties of sheet molding compounds is analyzed. The results show that the elastic modulus of short-chopped glass fiber sheet molding compounds increases first and then levels off with the increase in fiber length. By comparing random and regular structures, the rationality of the calculation method is demonstrated. The randomness of fiber distribution has a relatively small impact on the macroscopic elastic constants of composite materials.

关键词

短切纤维增强 / 随机分布模型 / 数值模拟 / 纤维长度 / 弹性常数

Key words

Short-chopped fiber reinforcement / Random distribution model / Numerical simulation / Fiber length / Elastic constant

中图分类号

TB332

引用本文

导出引用
喻九阳 , 张天义 , 刘博文 , . 短切玻璃纤维复合材料有限元模拟及其随机分布快速生成算法. 塑料科技. 2025, 53(03): 121-128 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.022
YU Jiuyang, ZHANG Tianyi, LIU Bowen, et al. Finite Element Simulation of Short-chopped Glass Fiber Composites and a Fast Generation Algorithm for Their Random Distribution[J]. Plastics Science and Technology. 2025, 53(03): 121-128 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.022

参考文献

1
王明道,姜宁,赵新涛,等.纤维增强热塑性树脂基复合材料固相复合成型工艺研究进展[J].材料科学与工艺,2024,32(4):95-110.
2
党婧,王凯,肇研.碳纤维增强热塑性树脂基复合材料界面性能研究[J].化工新型材料,2024,52(4):142-145.
3
陈平,陆春,于祺,等.纤维增强热塑性树脂基复合材料界面研究进展[J].材料科学工艺,2007,15(5):665-669.
4
ATIQAH A, JAWAID M, SAPUAN S M, et al. Thermal properties of sugar palm/glass-fiber reinforced thermoplastic polyurethane hybrid composites[J]. Composite Structures, 2018, 202(5): 954-958.
5
蔡建.玻璃钢成型技术[J].工程塑料应用,2003(2):66-70.
6
ZHANG D H, HE M, QIN S H, et al. Effect of fiber length and dispersion on properties of long glass fiber reinforced thermoplastic composites based on poly(butylene terephthalate)[J]. Rsc Advances, 2017, 7(25): 15439-15454.
7
胡婉欣.玻璃纤维增强尼龙6吸波复合材料的制备与性能研究[D].西安:西安建筑科技大学,2024.
8
UNTERWEGER C, BRÜGGEMANN O, FÜRST C. Effects of different fibers on the properties of short-fiber-reinforced polypropylene composites[J]. Composites Science & Technology, 2014, 103: 49-55.
9
FUKUDA H, CHOU T W. A probabilistic theory of the strength of short-fibre composites with variable fibre length and orientation[J]. Journal of Materials Science, 1982, 17(4): 1003-1011.
10
ZHU Y T, ZONG G, MANTHIRAM A, et al. Strength analysis of random short-fibre-reinforced metal matrix composite materials[J]. Journal of Materials Science 1994, 29(23): 6281-6286.
11
MORTAZAVIAN S, FATEMI A. Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites[J]. Composites Part B:Engineering, 2015, 72: 116-129.
12
KOUZNETSOVA V, BREKELMANS W A M, BAAI JENS F P T. An approach to micro-macro modeling of heterogeneous materials[J]. Computational Mechanics, 2001, 27: 37-48.
13
CHEN Y L, GHOSH S. Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading conditions[J]. International Journal of Plasticity, 2012, 32-33: 218-247.
14
MELRO A R, CAMANHO P P, PINHO S T. Influence of geometrical parameters on the elastic response of unidirectional composite materials[J]. Composite Structures, 2012, 94(11): 3223-3231.
15
MELRO A R, CAMANHO P P, PINHO S T. Generation of random distribution of fibres in long-fibre reinforced composites[J]. Composites Science and Technology, 2008, 68(9): 2092-2102.
16
OKEREKE M I, BUCKLEY C P, SIVIOUR C R. Compression of polypropylene across a wide range of strain rates[J]. Mechanics of Time-Dependent Materials, 2012, DOI: 10.1007/s11043-012-9167-z.
17
XIA Z H, ZHANGY F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8): 1907-1921.
18
DING Y, CAMANHO P P, SILVA A. A new quantitative method to evaluate the spatial distribution of fibres in composites: The degree of randomness[J]. Journal of Materials Research and Technology, 2023, 26: 7248-7258.
19
北京航空航天大学.一种颗粒随机分布的复合材料2D细观结构建模方法:CN202010287490.3[P].2020-08-14.
20
MORIOKA K, TOMITA Y, TAKIGAWA K. High-temperature fracture properties of GFRP composite for aerospace applications[J]. Materials Science and Engineering: A, 2001, 319: 675-678.
21
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法:GB/T1447—2005 [S].北京:中国标准出版社,2005.
22
尚士朋.基于商业有限元软件的周期性材料等效性能预测均匀化实施新方法[D].大连:大连理工大学,2017.
23
OKEREKE M I, AKPOYOMARE A I. A virtual framework for prediction of full-field elastic response of unidirectional composites[J]. Computational Materials Science, 2013, 70:82-99.
24
李凌岩,周金宇,马馨远.基于3D打印的三维短纤维增强复合材料强度预测分析[J].工程塑料应用,2022,50(1):109-115.
25
江真.短切碳纤维/乙烯基酯树脂片状模塑料拉伸性能分析[D].哈尔滨:哈尔滨工业大学,2018.
26
VAUGHAN T J, MCCARTHY C T. A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials[J]. Composites Science and Technology, 2010, 70(2): 291-297.
27
章继峰,王振清,周健生,等.基于Python-Abaqus复合材料代表性体积元的数值模型[J].宇航材料工艺,2009,39(3):25-29.
28
HINTON M J, KADDOUR A S, SODEN P D. Failure criteria in fibre-reinforced-polymer composites[M]. Amsterdam: Elsevier Ltd, 2004.

评论

PDF(8659 KB)

Accesses

Citation

Detail

段落导航
相关文章

/