
渐变式单螺杆结构的螺杆性能仿真分析
罗林, 王春涛, 宋都都, 罗祥
渐变式单螺杆结构的螺杆性能仿真分析
Simulation Analysis of Screw Performance of Graded Single-screw Structure
针对结构单一的普通单螺杆混合性能和剪切性能较差这一问题,在普通单螺杆的基础上改变螺纹头数和螺杆底径,提出一种新的渐变式单螺杆结构。采用SolidWorks建立渐变式单螺杆和普通双头单螺杆两种模型,依据有限元法(FEM)利用Ansys对两种模型进行仿真并分析,得到的压力、剪切速率和停留时间等结果,评估渐变式单螺杆的性能。结果表明:渐变式单螺杆流场内的压力峰值约为普通双头单螺杆的4.7倍,拥有更强的建压能力;渐变的螺杆底径使流场内的剪切速率增大,拥有更好的剪切性能;渐变式螺杆螺纹头数的增加使流场内物料停留时间延长,是普通双头单螺杆的2.3倍,物料混合更均匀,渐变式单螺杆拥有更强的混合性能。研究为单螺杆挤出机结构的优化和性能的提升提供依据。
Aiming at the problem that the conventional single-screw has poor mixing and shearing performance due to its simple structure, a new graded single-screw structure was proposed by changing the number of threads and the root diameter of the screw based on the conventional single-screw. Using SolidWorks, models of the progressive single-screw and the conventional twin-headed single-screw were established. Based on the Finite Element Method (FEM), the two models were simulated and analyzed using Ansys. The results, such as pressure, shear rate, and residence time, were used to evaluate the performance of the graded single-screw. The results showed that the pressure peak within the flow field of the graded single-screw was approximately 4.7 times that of the conventional twin-headed single-screw, indicating a stronger pressure-building capability. The varying root diameter of the screw increased the shear rate in the flow field, resulting in better shearing performance. The increase in the number of threads of the progressive screw extended the residence time of the material in the flow field to 2.3 times that of the conventional twin-headed single-screw, leading to more uniform mixing of the material. The graded single-screw thus exhibited superior mixing performance. The study provides a basis for the optimization of the structure and improvement of the performance of single-screw extruders.
渐变式单螺杆 / 螺杆底径 / 螺纹头数 / 剪切性能 / 混合性能
Graded single-screw / Root diameter of screw / Number of threadeds / Shear performance / Mixing performance
TQ320.66
1 |
黄晶晶,赵英虎,高莉,等.天然物质改性聚乳酸研究进展[J].功能材料,2021,52(3):3075-3080.
|
2 |
刘彩云,陈衍玲,王景,等.生物降解材料的性能及应用研究进展[J].塑料科技,2022,50(7):81-85.
|
3 |
王晓珂,冯冰涛,殷茂峰,等.增韧改性聚乳酸基生物降解材料研究进展[J].塑料科技,2023,51(12):88-93.
|
4 |
刘丰颉,李伟,彭新洋,等.聚乳酸的制备、改性及应用进展研究[J].塑料科技,2024,52(5):156-160.
|
5 |
汤霖森,郭树国,王丽艳.基于ANSYS的带行星轮同轴变速单螺杆挤出机三维流场分析[J].食品与机械,2021,37(5):107-110.
|
6 |
贺存政,樊瑜瑾,赵玉程,等.三螺杆分散混合数值模拟及实验分析[J].工程塑料应用,2022,50(5):82-88.
|
7 |
刘宏鑫,王丽艳,郭树国.同轴变速三螺杆挤出机的三维流场分析[J].包装与食品机械,2023,41(5):87-90.
|
8 |
李垚,王丽艳.基于摆线针轮传动的同轴异速单螺杆挤出机的仿真分析[J].中国油脂,2023,49(6):1-10.
|
9 |
朱玉珩,黄瑶,邹鲲,等.单螺杆挤出的进料均匀性分析及其结构优化设计[J].塑料工业,2022,50(2):80-86.
|
10 |
高岗,谢林生,马玉录,等.不同结构单螺杆屏障混炼元件混合特性研究[J].中国塑料,2015,29(9):85-91.
|
11 |
崔子森,王丽艳,郭树国.基于ANSYS的新组合型单螺杆挤出机特性研究[J].包装与食品机械,2023,41(2):53-57.
|
12 |
|
13 |
|
14 |
毕超,曹利,李翱,等.平行双螺杆挤出机的螺杆几何学[J].塑料,2011,40(4):81-83.
|
15 |
王瑞,高曙明,吴海燕.六面体网格生成和优化研究进展[J].计算机辅助设计与图形学学报,2020,32(5):693-708.
|
16 |
金子云,郭树国,左晓甜,等.新型变速单螺杆挤出机中熔体流动特性的数值模拟[J].饲料工业,2024,45(2):31-37.
|
17 |
滕健,朱向哲,李万旭,等.基于混沌理论偏心双螺杆挤出机端面混合机理[J].塑料,2021,50(1):1-5.
|
18 |
张一惟,黄志刚,商嘉玮,等.啮合异向双螺杆挤出机中螺杆端面结构参数对聚乳酸流场的影响[J].食品与机械,2023,39(4):71-76.
|
19 |
毕超.Polyflow软件基础及其在双螺杆挤出仿真过程中的应用[M].北京:机械工业出版社,2018.
|
20 |
|
21 |
|
22 |
|
23 |
张一明,黄志刚,徐珍,等.螺距变化对异向双螺杆挤出机流场影响的仿真分析[J].食品与机械,2023,39(10):93-99.
|
24 |
|
25 |
沈美震,任建民,朱向哲,等.新型偏心啮合盘元件的混沌混合特性[J].工程塑料应用,2020,48(3):83-91.
|
26 |
魏静,梁新龙,陈大兵,等.异向啮合型双螺杆捏合机转子型线演化及其混合性能[J].机械工程学报,2014,50(15):34-44.
|
27 |
|
28 |
陈峰峰,李浩杰,王一飞,等.基于Polyflow的反螺纹元件对粒子分散性仿真研究[J].工程塑料应用,2021,49(9):82-86.
|
29 |
杨冬冬,刘江林,梁建国,等.开槽螺纹对双螺杆挤出均匀性影响的仿真研究[J].塑料工业,2023,51(11):102-108.
|
30 |
张一明,黄志刚,徐珍,等.螺杆构型对啮合异向双螺杆流场影响的仿真分析[J].中国塑料,2023,37(10):131-138.
|
31 |
刘杨,朱向哲.新型偏心三螺杆挤出机流体混合特性分析[J].中国塑料,2022,36(7):150-156.
|
/
〈 |
|
〉 |