以丙三醇为扩链剂制备PPG型聚氨酯及其性能研究

侯方健, 张育林, 乔文强, 王植源

PDF(1071 KB)
PDF(1071 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (03) : 100-103. DOI: 10.15925/j.cnki.issn1005-3360.2025.03.018
助剂

以丙三醇为扩链剂制备PPG型聚氨酯及其性能研究

作者信息 +

Preparation and Properties Study of PPG-based Polyurethane Using Glycerol as Chain Extender

Author information +
History +

摘要

以聚丙二醇(PPG)与甲苯二异氰酸酯(TDI)制备3种—NCO基团质量分数分别为2.6%、3.6%、5.6%的预聚体,采用丙三醇为扩链交联剂制备3种聚氨酯弹性体。探究—NCO基团含量的变化对聚氨酯弹性体的力学性能、热性能等的影响。结果表明:随着—NCO基团含量的增加,聚氨酯弹性体的玻璃化转变温度上升,拉伸强度提高1.76 MPa,储能模量升高,邵A硬度提高20,内耗和断裂伸长率逐渐降低。其中,—NCO基团质量分数为5.6%的预聚体制得的聚氨酯弹性体具有最优的热性能和力学性能。

Abstract

Three prepolymers with different —NCO group mass fractions of 2.6%, 3.6%, and 5.6% were prepared using polypropylene glycol (PPG) and toluene diisocyanate (TDI). Polyurethane elastomers were then synthesized using glycerol as chain extender. The effects of the —NCO group content on the mechanical properties and thermal properties of the polyurethane elastomers were investigated. The results showed that as the —NCO group content increased, the glass transition temperature of the polyurethane elastomers rose, the tensile strength increased by 1.76 MPa, the storage modulus increased, the Shore A hardness improved by 20 units, while the internal damping and elongation at break gradually decreased. Among them, the polyurethane elastomer prepared from the prepolymer with a —NCO group mass fraction of 5.6% exhibited the best thermal and mechanical properties.

关键词

聚丙二醇 / 丙三醇 / 聚氨酯弹性体

Key words

Polypropylene glycol / Glycerol / Polyurethane elastomer

中图分类号

TQ334.1

引用本文

导出引用
侯方健 , 张育林 , 乔文强 , . 以丙三醇为扩链剂制备PPG型聚氨酯及其性能研究. 塑料科技. 2025, 53(03): 100-103 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.018
HOU Fangjian, ZHANG Yulin, QIAO Wenqiang, et al. Preparation and Properties Study of PPG-based Polyurethane Using Glycerol as Chain Extender[J]. Plastics Science and Technology. 2025, 53(03): 100-103 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.018

参考文献

1
ZHOU Y, XIU H, DAI J, et al. Largely reinforced polyurethane via simultaneous incorporation of poly(lactic acid) and multiwalled carbon nanotubes[J]. RSC Advances, 2015, 5(39): 30912-30919.
2
MAISONNEUVE L, LAMARZELLE O, RIX E, et al. Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s[J]. Chemical Reviews, 2015, 115(22): 12407-12439.
3
HU S K, SHOU T, FU G Q, et al. New stratagem for designing high-performance thermoplastic polyurethane by using a new chain extender[J]. Macromolecular Chemistry and Physics, 2021, 222(10): 2000439.
4
郭珊珊,林晓甜,刘锦春.低聚物二醇软段对聚氨酯弹性体性能的影响[J].聚氨酯工业,2015,30(6):35-37.
5
LIAW D J. The relative physical and thermal properties of polyurethane elastomers: Effect of chain extenders of bisphenols, diisocyanate, and polyol structures[J]. Journal of Applied Polymer Science, 1997, 66(7): 1251-1265.
6
ASENSIO M, FERRER J F, NOHALES A, et al. The role of diisocyanate structure to modify properties of segmented polyurethanes[J]. Materials, 2023, 16(4): 1633.
7
WANG Z, ZHANG T F, ZHANG Z J, et al. Effect of hard-segment content on rheological properties of glycidyl azide polyol-based energetic thermoplastic polyurethane elastomers[J]. Polymer Bulletin, 2016, 73(11): 3095-3104.
8
LIOW S S, LIPIK V T, WIDJAJA L K, et al. Enhancing mechanical properties of thermoplastic polyurethane elastomers with 1,3-trimethylene carbonate, epsilon-caprolactone and L-lactide copolymers via soft segment crystallization[J]. Express Polymer Letters, 2011, 5(10): 897-910.
9
SAHEBI JOUIBARI I, HADDADI-ASL V, MIRHOSSEINI M M. Effect of nanofiller content and confined crystallization on the microphase separation kinetics of polyurethane nanocomposites[J]. Polymer Composites, 2018, 40(S1): E422-E430.
10
PUSZKA A. Thermal and mechanical behavior of new transparent thermoplastic polyurethane elastomers derived from cycloaliphatic diisocyanate[J]. Polymers, 2018, 10(5): 537.
11
SU S K, GU J H, LEE H T, et al. Effects of an aromatic fluoro-diol and polycaprolactone on the properties of the resultant polyurethanes[J]. Advances in Polymer Technology, 2018, 37(4): 1142-1152.
12
HUAN Y, LIU J, WANG J, et al. Physical properties and morphology of crosslinked polyurethane synthesized from para-phenylene diisocyanate and polyether polyol[J]. Journal of Applied Polymer Science, 2017, 134(37): 45241.
13
AMJED N, BHATTI I A, ZIA K M, et al. Synthesis and characterization of stable and biological active chitin-based polyurethane elastomers[J]. International Journal of Biological Macromolecules, 2020, 154: 1149-1157.
14
韩宝乐,于文杰,徐归德.聚氨酯在现代汽车工业中的应用[J].化学推进剂与高分子材料,2007(1):1-6.
15
唐劲松,项超力,盛兴丰,等.聚氨酯产业前沿技术及应用发展[J].聚氨酯工业,2024,39(1):1-8.
16
黎清宁,卢德宏,周荣.聚氨酯弹性体在矿山中的应用[J].昆明理工大学学报:理工版,2003(1):35-38.
17
陈文伟,刘建铭,付函.浮选机用聚氨酯叶轮及盖板的研制[J].特种橡胶制品,2001(1):37-38.
18
王卫东.聚氨酯橡胶制品的生产及其在矿山的应用[J].金属矿山,1999(4):58-59.
19
王鹏.轨道交通用聚氨酯微孔弹性支撑研制[D].北京:北京化工大学,2017.
20
CONG L, YANG F, GUO G H, et al. The use of polyurethane for asphalt pavement engineering applications: A state-of-the-art review[J]. Construction and Building Materials, 2019, 225: 1012-1025.
21
贾林才,孙奉瑞.聚氨酯弹性体在交通领域的应用[J].化学推进剂与高分子材料,2019,17(1):29-32.
22
王东青,李伟,刘学栋,等.医用聚氨酯弹性体的应用研究进展[J].现代化工,2006():100-102.
增刊1
23
OSI B, KHODER M, AL-KINANI A A, et al. Pharmaceutical, biomedical and ophthalmic applications of biodegradable polymers (BDPs): Literature and patent review[J]. Pharmaceutical Development and Technology, 2022, 27(3): 341-356.
24
HAJEBI S, NASR S M, RABIEE N, et al. Bioresorbable composite polymeric materials for tissue engineering applications[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70(13): 926-940.
25
LIU J, LI Z, ZHANG L W, et al. Degradation behavior and mechanism of polyurethane coating for aerospace application under atmospheric conditions in South China Sea[J]. Progress in Organic Coatings, 2019, 136: 105310.
26
孟美俊,孙宏宾.PPG/TDI-80/MOCA浇注型聚氨酯弹性体的制备及性能[J].山西化工,2018,38(4):13-15.
27
ZHANG Y, QI Y H, ZHANG Z P. Synthesis of PPG-TDI-BDO polyurethane and the influence of hard segment content on its structure and antifouling properties[J]. Progress in Organic Coatings, 2016, 97: 115-121.
28
李玲玲.基于间苯二亚甲基二异氰酸酯聚氨酯弹性体的合成与表征[D].大连:大连理工大学,2021.
29
KOBERSTEIN J T, GALAMBOS A F, LEUNG L M. Compression-molded polyurethane block copolymers.1. microdomain morphology and thermomechanical properties[J]. Macromolecules, 1992, 25(23): 6195-6204.
30
李玲玲,张赛,吕敬坡,等.HQEE和BDO扩链XDI型聚氨酯弹性体的制备及表征[J].聚氨酯工业,2021,36(3):34-37.

评论

PDF(1071 KB)

Accesses

Citation

Detail

段落导航
相关文章

/