
聚丙烯-钢纤维混凝土蠕变特性的温度-荷载耦合效应
俎琪, 肖东, 彭德坤, 王育康, 黄锐
聚丙烯-钢纤维混凝土蠕变特性的温度-荷载耦合效应
Temperature-load Coupling Effect on Creep Characteristics of Polypropylene Steel Fiber Reinforced Concrete
为研究温度-荷载耦合下混杂纤维混凝土蠕变行为,开展钢纤维和聚丙烯纤维混凝土在20~800 ℃的压缩蠕变试验。测试变量包括温度、荷载水平、加热速率、混凝土强度和混凝土中是否掺入纤维。结果表明:瞬态蠕变应变(ε trc)在总应变中的占比较大。温度范围和应力水平对ε trc有显著影响,特别是在温度高于500 ℃和应力水平高于40%时;目标温度一定,ε trc总量一定,加热速率与瞬态蠕变增长速率呈正相关关系;在普通强度混凝土中掺入钢纤维能够小幅降低混凝土的ε trc,而在高强混凝土中加入聚丙烯纤维可显著提高混凝土ε trc。
To investigate the creep behavior of hybrid fiber-reinforced concrete under coupled temperature and load conditions, compression creep tests were conducted on steel fiber and polypropylene fiber-reinforced concrete at temperatures ranging from 20 °C to 800 °C. The test variables included temperature, load level, heating rate, concrete strength, and the presence of fibers in the concrete. The results showed that transient creep strain (ε trc) accounted for a significant proportion of the total strain. The temperature range and stress level had a significant impact on ε trc, especially at temperatures above 500 °C and stress levels above 40%. When the target temperature was constant and the total ε trc was fixed, the heating rate was positively correlated with the rate of ε trc increase. Adding steel fibers to normal-strength concrete could slightly reduce the ε trc of the concrete, while incorporating polypropylene fibers into high-strength concrete significantly increased the ε trc.
蠕变应变 / 热力耦合 / 耐火性 / 钢纤维 / 聚丙烯纤维
Creep strain / Thermal coupling / Fire resistance / Steel fibers / Polypropylene fibers
U213.1
1 |
|
2 |
侯炜,张岗,李源,等.考虑防火涂料的PC箱梁时空温度场及刚度退化试验研究[J].中国公路学报,2021,34(6):57-68.
|
3 |
苗艳春,张玉,SELYUTINANina,等.基于X-CT的高温后再生保温混凝土损伤分析[J].复合材料学报,2022,39(6):2829-2843.
|
4 |
白卫峰,韩浩田,管俊峰,等.考虑高温劣化效应的混凝土统计损伤本构模型研究[J].应用基础与工程科学学报,2020,28(6):1397-1409.
|
5 |
|
6 |
谭清华,周侃.升、降温火灾下混凝土瞬态热应变的计算[J].工程力学,2015,32():163-166.
增刊1
|
7 |
|
8 |
刘雨姗,庞建勇,姚韦靖.页岩陶粒轻骨料混凝土高温后蠕变特性[J].建筑材料学报,2021,24(5):1096-1104.
|
9 |
|
10 |
吴剑锋,李慧剑,王彩华,等.混凝土单轴压缩短时蠕变破坏幂律行为研究[J].硅酸盐通报,2020,39(10):3208-3212, 3229.
|
11 |
姚未来,江世永,蔡涛,等.粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J].材料导报,2019,33(17):2890-2901.
|
12 |
李想,刘传孝,孟琪,等.不同温度下混凝土材料的短时蠕变特性研究[J].矿业研究与开发,2019,39(2):82-86.
|
13 |
霍晓伟,盛冬发,蔡猛,等.废弃纤维再生混凝土非线性蠕变模型[J].科学技术与工程,2024,24(3):1170-1175.
|
14 |
|
15 |
郑硕,王勇军,金依林,等.超高强型超高分子量聚乙烯纤维多级热拉伸过程中的蠕变行为[J].现代纺织技术,2024,32(10):85-93.
|
16 |
司衍鹏,孙立帅,闫恩玮,等.考虑温度效应的干纤维预制体压缩蠕变模型[J].航空学报,2023,44(22):248-262.
|
17 |
杨倩,翁鸣,张梦茹,等.热塑性聚酰胺弹性纤维的结构与性能[J].现代纺织技术,2023,31(5):96-105.
|
18 |
于雯,黄悦,黄谦,等.FRP筋预应力混凝土梁长期性能研究进展[J].复合材料科学与工程,2022(4):111-119.
|
19 |
陈康,蒋权,姬洪,等.高强型聚酯工业丝在不同温度下的蠕变断裂机制[J].纺织学报,2020,41(11):1-9.
|
20 |
杨节标,张立晨,王哲.玻璃纤维增强热固性塑料管蠕变性能研究进展[J].复合材料科学与工程,2020(7):123-128.
|
21 |
朱劲松,王彦磊,张源.环境温湿度及荷载耦合作用下预应力混凝土梁长期变形分析方法研究[J/OL].土木工程学报,1-13[2024-11-10].
|
22 |
郑晗,孙勇飞,王新威.不同改性方法对超高分子量聚乙烯纤维蠕变行为的影响[J].工程塑料应用,2024,52(8):140-147.
|
23 |
|
24 |
李琦,徐飞,郑贺民,等.冻融循环作用下橡胶混凝土蠕变特性试验研究[J].科学技术与工程,2022,22(8):3261-3268.
|
25 |
|
/
〈 |
|
〉 |