
导热型氮化硅/聚碳酸酯复合材料的绝缘性能及力学性能研究
邱继焱, 雷艳华
导热型氮化硅/聚碳酸酯复合材料的绝缘性能及力学性能研究
Study on Insulation and Mechanical Properties of Thermal Conductive Si3N4/PC Composites
研究改性Si3N4掺量对氮化硅/聚碳酸酯(Si3N4/PC)复合材料的热学性能、绝缘性能和力学性能的影响。结果表明:Si3N4掺量较少时,Si3N4分布均匀;Si3N4掺量过大容易引起Si3N4聚集和不均匀分布。随着Si3N4掺量的增加,复合材料的热导率和热稳定性得到提高,体积电阻率和介电常数逐渐增大,拉伸强度、弯曲强度和冲击强度逐渐降低,压缩强度逐渐增大。Si3N4掺量较少时,热导率、热稳定性、绝缘性能和压缩强度增长较快,拉伸强度、弯曲强度和冲击强度降低较慢;Si3N4掺量较高时,热导率、绝缘性能和压缩强度增长变慢,拉伸强度、弯曲强度和冲击强度降低较快,热稳定性有所降低。Si3N4掺入质量分数为30%时,Si3N4/PC的综合性能较好,与纯PC相比,热导率提高538.9%,质量损失5%时的温度提高37 ℃,体积电阻率和介电常数提高179.6%和22.6%,拉伸强度、弯曲强度和冲击强度分别降低6.7%、5.0%和7.1%,压缩强度提高16.6%。
The study investigates the effects of the content of modified Si3N4 on the thermal properties, electrical insulation properties, and mechanical properties of silicon nitride/polycarbonate (Si3N4/PC) composites. The results show that when the content of Si3N4 is low, it is distributed uniformly. However, excessive Si3N4 content tends to cause aggregation and non-uniform distribution of Si3N4. As the Si3N4 content increases, the thermal conductivity and thermal stability of the composites are enhanced, while the volume resistivity and dielectric constant gradually increase. Meanwhile, the tensile strength, flexural strength, and impact strength decrease gradually, whereas the compressive strength increases. At low Si3N4 content, the thermal conductivity, thermal stability, electrical insulation, and compressive strength increase rapidly, while the tensile strength, flexural strength, and impact strength decrease slowly. At high Si3N4 content, the growth rate of thermal conductivity, electrical insulation, and compressive strength slows down, while the tensile strength, flexural strength, and impact strength decrease more rapidly, and the thermal stability is somewhat reduced. When the mass fraction of Si3N4 is 30%, the Si3N4/PC composites exhibit better comprehensive properties. Compared with pure PC, the thermal conductivity is increased by 538.9%, the temperature at which the mass loss reaches 5% is increased by 37 ℃, the volume resistivity and dielectric constant are increased by 179.6% and 22.6%, respectively. The tensile strength, flexural strength, and impact strength are reduced by 6.7%, 5.0%, and 7.1%, respectively, while the compressive strength is increased by 16.6%.
聚碳酸酯 / 氮化硅 / 热学性能 / 绝缘性能 / 力学性能
Polycarbonate / Si3N4 / Thermal properties / Insulation performance / Mechanical properties
TB332
1 |
孙娜,曾小亮,陈鹏,等.高导热氮化硼/聚碳酸酯复合材料的制备与性能研究[J].集成技术,2017,6(6):15-23.
|
2 |
蒋季成,罗钟琳,王标兵.含硅环三磷腈衍生物阻燃改性聚碳酸酯的性能[J].工程塑料应用,2019,47(2):122-126.
|
3 |
孙琦伟,王韬,陈宇宏,等.紫外加速老化对聚碳酸酯力学和光学性能的影响[J].材料工程,2021,49(11):83-89.
|
4 |
洪韦琦,陈庆华,黄宝铨,等.填充型导热高分子材料研究进展[J].精细石油化工进展,2019,20(6):32-37.
|
5 |
宋维东.导热聚合物复合材料用填料研究进展[J].中国粉体工业,2020(4):12-14.
|
6 |
陈自安,李珍,王建功,等.填充型导热绝缘塑料的研究进展[J].现代塑料加工应用,2016,28(3):56-59.
|
7 |
陈先敏,兰修才,李谦,等.导热尼龙6材料的制备与性能[J].塑料工业,2018,46(10):26-29.
|
8 |
陈义,卞达,赵永武.纳米氮化硼/氮化硅改性聚四氟乙烯涂层高温下的摩擦学性能[J].塑料,2022,51(3):22-25.
|
9 |
陈洋.碳化硅和氮化硅纳米纤维的制备及其性能研究[D].天津:天津工业大学,2018.
|
10 |
|
11 |
张亚丽,王晓刚,张蕾,等.高性能立方碳化硅导热填料的制备与性能研究[J].硅酸盐通报,2020,39(3):937-941.
|
12 |
许彦.碳纳米管-氮化硅改性聚丙烯复合材料的制备方法[J].化工管理,2019(17):22-24.
|
13 |
刘畅,蔡会武,路卫卫,等.氮化硼填充导热复合材料研究进展[J].应用化工,2022,51(1):269-272.
|
14 |
王新瑞,龚业磊,姚军龙,等.碳化硅/氮化硅/聚丙烯复合材料的制备及介电性能研究[J].化肥设计,2018,56(4):12-15.
|
15 |
王明明,张炜巍.氮化硅/碳纤维/环氧树脂复合材料的制备研究[J].粘接,2013(7):36-39.
|
16 |
向小莲,马忠雷,石林,等.功能化碳化硅纳米线/液晶环氧复合材料的制备与导热性能[J].复合材料学报,2022,39(8):3747-3756.
|
17 |
周聪,霍又嘉,姚军龙,等.碳化硅/聚甲基丙烯酸甲酯/聚苯乙烯导热复合材料的制备及性能研究[J].化肥设计,2019,57(6):13-15, 47.
|
18 |
李涛,李谦,周淑芬,等.不同羟端基含量聚碳酸酯的合成及热稳定性研究[J].塑料工业,2022,50(9):33-37.
|
19 |
沙明.晶体和非晶氮化硅的结构及光热特性模拟研究[D].哈尔滨:哈尔滨工业大学,2023.
|
20 |
马士帅.氮化硅基复相陶瓷制备、反应机理及吸波应用研究[D].哈尔滨:哈尔滨工业大学,2023.
|
21 |
袁浩泽.氮化硅基耐热型复合材料的制备及吸波性能研究[D].淮南:安徽理工大学,2022.
|
22 |
梁姣利,邵水源.环氧树脂/改性Si3N4复合材料的制备与性能研究[J].塑料科技,2017,45(1):31-35.
|
23 |
张笑笑.聚碳酸酯复合材料电学和力学性能的研究[D].北京:北京化工大学,2013.
|
24 |
贾海涛.纳米级无机粒子对聚乙烯的增强与增韧[J].化工管理,2021(36):56-57.
|
25 |
胡明,祝保林.氰酸酯树脂/表面多步接枝改性γ-Si3N4复合材料制备及性能[J].工程塑料应用,2022,50(1):21-27.
|
26 |
于志省,白瑜,王巍.聚碳酸酯基导热复合材料的热学与力学性能[J].石油化工,2018,47(2):169-174.
|
/
〈 |
|
〉 |