
超支化聚乙烯聚酯嵌段共聚物的制备与表征
温朝阳, 张志超, 韩双, 李盛宇
超支化聚乙烯聚酯嵌段共聚物的制备与表征
Synthesis and Characterization of Hyperbranched Polyethylene-b-Polyester Copolymers
以2-巯基乙醇和超支化聚乙烯为原料,通过巯基-烯烃点击化学反应制备羟基功能化超支化聚乙烯(HBPE-OH)。以HBPE-OH作为引发剂,在有机碱1,5,7-三叠氮双环(4.4.0)癸-5-烯(TBD)或二正丁基镁(MgBu2)作用下可以开环聚合外消旋丙交酯以及ε-己内酯。结果表明:MgBu2/HBPE-OH催化体系的活性要高于TBD/HBPE-OH催化体系。生成的聚合物的核磁共振氢谱以及聚合物的凝胶渗透色谱(GPC)淋出曲线的单峰分布表明产物为超支化聚乙烯-聚丙交酯以及超支化聚乙烯-聚己内酯二元嵌段共聚物,聚合物的分子量分布较低。此外,以MgBu2/HBPE-OH催化剂制备超支化聚乙烯-聚丙交酯-聚己内酯三元嵌段共聚物,并通过核磁共振以及GPC对其结构进行表征。差示扫描量热法(DSC)表明所制备的嵌段共聚物的玻璃化转变温度和熔点随着聚酯链段长度的增加而变高。其中三元嵌段共聚物有两个熔点(200 ℃和224 ℃),玻璃化转变温度为136 ℃。
Hydroxyl functionalized hyperbranched polyethylene (HBPE-OH) was prepared by thiol-ene click reaction between 2-mercaptoethanol and hyperbranched polyethylene. Using HBPE-OH as an initiator, racemic lactide and ε-caprolactone can be polymerized through ring opening polymerization using organic base 1,5,7-Triazabicylo[4.4.0]dec-5-ene (TBD) or di-n-butyl magnesium (MgBu2). It was found that the catalytic activity of the MgBu2/HBPE-OH catalytic system was higher than that of the TBD/HBPE-OH catalytic system. Thus, narrowly distributed (hyperbranched polyethylene)-b-(polylactide) and (hyperbranched polyethylene)-b-(polycaprolactone) block polymers were produced which were structurally characterized by 1H NMR spectroscopy and GPC. In addition, (hyperbranched polyethylene)-b-(polylactide)-b-(polycaprolactone) ternary block copolymers were prepared using a MgBu2/HBPE-OH catalyst and were characterized by nuclear magnetic resonance and GPC. The differential scanning calorimetry (DSC) characterization of the obtained block copolymer demonstrated that the glass transition temperature and melting point of the polymer increased with the increase of the length of the polyester chain segment. The ternary block copolymer has two melting points (200 ℃and 224 ℃) and a glass transition temperature of 136 ℃.
超支化聚乙烯 / 外消旋丙交酯 / ε-己内酯 / 开环聚合 / 嵌段共聚物
Hyperbranched polyethylene / Racemic lactide / ε-caprolactone / Ring opening polymerization / Block copolymers
O633.14
1 |
麦碧云,陈旭东.超支化聚乙烯的应用进展[J].合成材料老化与应用,2019,48(1):5-11.
|
2 |
张丹枫,樊帅,伏艳,等.支化聚乙烯的合成及结构与性能[J].高等学校化学学报,2013,34(8):6-11.
|
3 |
|
4 |
孔德忠.低密度聚乙烯/热塑性弹性体的电缆阻燃材料的制备及其性能研究[J].塑料科技,2024,52(1):59-62.
|
5 |
|
6 |
|
7 |
|
8 |
姜泽钰,彭晨,王宇,等.聚乙醇酸单体乙交酯合成研究进展[J].塑料科技,2023,51(12):94-98.
|
9 |
|
10 |
|
11 |
|
12 |
刘金凤,者东梅,杨勇,等.生物降解塑料的分类和应用研究进展[J].塑料科技,2024,52(1):117-123.
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
王晓珂,冯冰涛,殷茂峰,等.增韧改性聚乳酸基生物降解材料研究进展[J].塑料科技,2023,51(12):88-93.
|
19 |
李永超,孟祥宇,崔学强,等.马来酸酐接枝聚乳酸增容聚碳酸亚丙酯/聚乳酸共混体系的结构与性能研究[J].塑料科技,2021,49(6):7-10.
|
20 |
|
21 |
|
22 |
田勇,刘传玉,王文彬,等.2-巯基乙醇的合成与应用进展[J].黑龙江科学,2011,2(3):4-8.
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
/
〈 |
|
〉 |