
MDNs/FGNs/IFR协同阻燃剂对环氧树脂热降解动力学的影响
吴正环, 刘淑意, 陈卓, 王佳玲, 王权, 宋高杰, 郑佳玉
MDNs/FGNs/IFR协同阻燃剂对环氧树脂热降解动力学的影响
Effect of MDNs/FGNs/IFR Synergistic Flame Retardant on Thermal Degradation Kinetics of Epoxy Resin
采用热重分析仪研究了环氧树脂(EP)、膨胀阻燃剂/环氧树脂(IFR/EP)和层状二硫化钼纳米片/鳞状石墨纳米片/膨胀阻燃剂/环氧树脂(MDNs/FGNs/IFR/EP)复合材料的热降解过程,比较IFR和MDNs/FGNs/IFR加入对EP复合材料的热稳定性和其热降解过程的影响。采用Horowitz-Metzger法、Zavkovic法和Newkirk法计算EP及其复合材料的热降解动力学活化能。结果表明:EP及其复合材料呈现出相似的热分解阶段,IFR有助于提高材料的热稳定性,协效阻燃剂MDNs/FGNs的加入使复合材料的热稳定性进一步提高,材料在800 ℃的残炭率显著提升。Horowitz-Metzger法得到的活化能分别为98.14、56.18、54.98 kJ/mol;Zavkovic法得到的活化能分别为162.89、160.88、155.63 kJ/mol;Newkirk法得到的活化能分别为99.51、52.29、52.77 kJ/mol。
A thermogravimetric analyzer was used to study the thermal degradation process of epoxy resin (EP), intumescent flame retardant/epoxy resin (IFR/EP), and layered molybdenum disulfide nanosheets/flake graphite nanosheets/intumescent flame retardant/epoxy resin (MDNs/FGNs/IFR/EP) composites. The effects of IFR and MDNs/FGNs/IFR addition on the thermal stability and thermal degradation process of EP composites were compared. The activation energy of thermal degradation kinetics of EP and its composites was calculated using Horowitz-Metzger method, Zavkovic method and Newkirk method. The results showed that EP and its composites exhibited similar thermal decomposition stages, and IFR helped to improve the thermal stability of the materials. The addition of synergistic flame retardants MDNs/FGNs further enhanced the thermal stability of the composites, the residual carbon rate of the material has also been significantly improved at 800 ℃. The activation energies obtained by Horowitz-Metzger method were 98.14, 56.18, 54.98 kJ/mol, respectively. The activation energies obtained by the Zavkovic method were 162.89, 160.88, 155.63 kJ/mol. The activation energies obtained by the Newkirk method were 99.51, 52.29, 52.77 kJ/mol.
Epoxy resin / Intumescent flame retardant / Thermal degradation kinetics / Thermal stability
TQ323.5 / TB33
1 |
唐刚,陶熠,邓丹,等.呋喃基磷杂菲阻燃剂的合成及在阻燃环氧树脂中的应用[J].高等学校化学学报,2024,45(4):53-61.
|
2 |
林黎明,王正洲.阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的性能[J].复合材料学报,2025,42(2):737-746.
|
3 |
许松江,祁钰昭,胥秋,等.DOPS/TPT复配阻燃环氧树脂的性能[J].高分子材料科学与工程,2024,40(3):66-75.
|
4 |
|
5 |
李霈,付海,赵欧,等.聚磷酸酯阻燃剂复配聚磷酸铵对环氧树脂阻燃性能的影响[J].高等学校化学学报,2017,38(2):294-302.
|
6 |
楼高波,戴进峰,刘丽娜,等.一种自交联型阻燃剂的合成及对固态环氧树脂的性能[J].复合材料学报,2024,41(2):712-722.
|
7 |
马静,刘美哲,朱明轩,等.聚焦磷酸哌嗪-埃洛石纳米管-三聚氰胺氰尿酸盐协效阻燃环氧树脂[J].材料工程,2023,51(6):177-185.
|
8 |
冯倩倩,朱方龙,信群,等.膨胀型阻燃棉织物的热降解动力学[J].纺织学报,2016,37(12):81-86.
|
9 |
孙英娟,黄保利,岳丽娜,等.改性纳米二氧化硅在环氧树脂膨胀阻燃体系中的协效作用研究[J].化学研究与应用,2021,33(10):1904-1910.
|
10 |
许文迪,陆嘉怡,蔡博禹,等.含DOPO/吲哚的磺胺类化合物的合成及其阻燃环氧树脂[J].高分子材料科学与工程,2024,40(3):56-65.
|
11 |
|
12 |
宝冬梅,祁钰昭,王建航,等.双基阻燃剂HAP-DOPS对聚乳酸热稳定性的影响[J].贵州师范大学学报:自然科学版,2022,40(5):11-18, 132.
|
13 |
刘成娟,陈葵,纪利俊,等.环氧树脂包覆聚磷酸铵微胶囊的制备及其对聚丙烯的阻燃效果[J].复合材料学报,2015,32(3):728-736.
|
14 |
张红霞,刘昌伟.聚磷酸铵/环糊精/硅橡胶复合材料的阻燃性能及热降解动力学[J].南开大学学报:自然科学版,2020,53(1):7-11.
|
15 |
|
16 |
白文斌.自然老化对PC和PET结构与性能的影响[D].青岛:青岛科技大学,2020.
|
17 |
|
18 |
郭文文.腰果酚衍生物的合成及其阻燃增韧环氧树脂复合材料的性能与机理研究[D].合肥:中国科学技术大学,2020.
|
19 |
|
20 |
|
21 |
|
22 |
高明,李桂芬,杨荣杰.含季戊四醇二磷酸酯三聚氰胺-尿醛树脂盐环氧树脂的阻燃性能[J].过程工程学报,2008(1):182-186.
|
23 |
郝建薇,温海旭,杜建新,等.硼酸锌协同膨胀阻燃环氧涂层耐火作用及其机理研究[J].北京理工大学学报,2012,32(10):1091-1095.
|
24 |
鲁玉鑫,卢林刚.聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J].材料导报,2023,37(9):270-277.
|
25 |
杜晋,吴正环,王权,等.Nano(FGP/h-BN)/IFR/EP复合材料固化过程动力学及热性能对比[J].塑料工业,2021,49(8):95-99.
|
26 |
吕晟东.官能化石墨烯片层尺寸对环氧树脂复合材料固化动力学和力学性能的影响研究[D].北京:北京化工大学,2020.
|
27 |
|
28 |
|
/
〈 |
|
〉 |