
GF/VE复合材料劈裂拉伸力学性能与能量耗散分析
王璐, 雷经发, 刘涛, 孙虹
GF/VE复合材料劈裂拉伸力学性能与能量耗散分析
Analysis of Split Tensile Mechanical Properties and Energy Dissipation of GF/VE Composites
为探究玻璃纤维增强乙烯基酯(GF/VE)复合材料的动态劈裂拉伸力学行为和能量耗散情况,利用分离式霍普金森压杆(SHPB)等装置对5种不同GF含量的GF/VE复合材料进行巴西劈裂实验。借助高速摄像系统记录试样在动态加载中的变形破坏全过程,并分析试样在3种加载气压下(0.2、0.3、0.4 MPa)的能量耗散规律。结果表明:在巴西劈裂实验中,5种GF含量的GF/VE复合材料的入射能、反射能、吸收能及峰值应力均随加载气压的增加而增大。在相同加载气压下,GF/VE复合材料的静动态抗拉强度、吸收能密度和能量利用率在GF质量分数65%时均为最高,而GF质量分数70%时最低,入射能和反射能几乎不受GF含量的影响。研究成果可为GF增强树脂类脆性材料动态劈裂拉伸力学性能研究提供参考。
In order to investigate the dynamic split tensile mechanical behavior and energy dissipation of glass fiber reinforced vinyl ester (GF/VE) composites, Brazilian splitting experiments were carried out on five kinds of GF/VE composite specimens with different glass fiber(GF) contents by using devices such as the split Hopkinson press bar (SHPB). The whole process of deformation and destruction of the specimens under dynamic loading was recorded with the help of a high-speed camera system, and the energy dissipation patterns of the specimens were analyzed under three kinds of loading air pressure (0.2, 0.3, 0.4 MPa) . The results showed that the incident energy, reflected energy, absorbed energy and peak stress of five kinds of GF/VE composites with GF content increased with loading air pressure in the Brazilian splitting experiment. Under the same loading air pressure, the static and dynamic tensile strength, absorbed energy density, and energy utilization rate of the GF/VE composite samples were the highest when the mass fraction of GF was 65% and the lowest when the mass fraction was 70%, and the incident and reflected energies were almost unaffected by the GF content. The research results can provide a reference for the study of dynamic split tensile mechanical properties of GF reinforced resin-based brittle materials.
GF/VE复合材料 / 分离式霍普金森压杆 / 劈裂拉伸 / 抗拉强度 / 能量耗散
GF/VE composites / Split Hopkinson compression bar device / Split tensile / Tensile strength / Energy dissipation
TQ332
1 |
|
2 |
|
3 |
|
4 |
|
5 |
段焕天.玻璃纤维/乙烯基酯复合材料静动态力学性能研究[D].合肥:安徽建筑大学,2022.
|
6 |
|
7 |
马鹏,李进,康少付,等.不同无纺布对玻纤/乙烯基酯复合材料力学性能的影响[J].复合材料科学与工程,2020(5):69-73.
|
8 |
韩巧丽,李汪灏,邢为特.E-玻璃纤维/乙烯基酯树脂复合材料拉伸与模态特性分析[J].太阳能学报,2020,41(1):210-216.
|
9 |
彭新龙.玻璃纤维对乙烯基酯复合材料层间性能的影响[J].热固性树脂,2023,38(3):49-54.
|
10 |
平琦,马芹永,袁璞.岩石试件SHPB巴西劈裂试验中能量耗散分析[J].采矿与安全工程学报,2013,30(3):401-407.
|
11 |
|
12 |
|
13 |
|
14 |
徐颖,邵彬彬,许维伟,等.短切碳纤维C/SiC陶瓷基复合材料的动态巴西劈裂实验[J].爆炸与冲击,2017,37(2):315-322.
|
15 |
|
16 |
温森,赵现伟,常玉林,等.基于SHPB的复合岩样动态压缩破坏能量耗散分析[J].应用基础与工程科学学报,2021,29(2):483-492.
|
/
〈 |
|
〉 |