用于高效雾水收集的混合润湿性仿生结构研究

曹敏强, 程惠婷, 马永奇, 陈琦, 王文欣

PDF(2969 KB)
PDF(2969 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (03) : 7-12. DOI: 10.15925/j.cnki.issn1005-3360.2025.03.002
理论与研究

用于高效雾水收集的混合润湿性仿生结构研究

作者信息 +

Research on Hybrid Wettability Biomimetic Structures for Efficient Fog Water Harvesting

Author information +
History +

摘要

雾水收集为缓解全球淡水资源短缺提供出路。研究模仿纳米布沙漠甲虫背部的混合润湿性结构,3D打印仿纳米布沙漠甲虫结构。选择性地用疏水纳米SiO2悬浮液对3D打印仿纳米布沙漠甲虫结构的基底进行表面修饰,制备混合润湿性仿纳米布沙漠甲虫结构。这种仿生结构基底表面均匀附着直径约15 nm的疏水纳米SiO2粒子,基底上分布着由直径约1 mm的亲水性3D凸起结构组成的阵列。随着3D打印混合润湿性仿纳米布沙漠甲虫结构基底表面疏水纳米SiO2含量的不断增加,其基底表面的接触角也逐渐增大,润湿性逐渐降低,仿生结构的集水率逐渐增大。3D打印混合润湿性仿纳米布沙漠甲虫结构集水效率可达到0.943 g/(cm2·h),约是3D打印平面样品的2.5倍。结果表明:3D凸起结构和表面润湿性梯度有利于提高3D打印仿纳米布沙漠甲虫结构的集水性能。

Abstract

Fog water harvesting offers a way alleviate global freshwater shortages. In this study, the 3D printing mixed wettability biomimetic structure was inspired by the Namib desert beetle back structure. The substrates of 3D printing biomimetic Namib desert beetle structures were selectively surface-modified with hydrophobic nano-SiO2 suspensions to prepare mixed wettability biomimetic Namib desert beetle structures. Hydrophobic SiO2 nanoparticles with a diameter of about 15 nm were uniformly attached to the substrate surface of this biomimetic structure. The base is covered with an array of hydrophilic 3D protrusions, each with a diameter of approximately 1 mm. With the increase of hydrophobic nano-SiO2 content on the substrate surface of 3D printing mixed wettability biomimetic Namib desert beetle structure, the water contact angle of the substrate surface increased gradually, the wettability decreased gradually, and the water collection rate of the biomimetic structure increased gradually. The water collection rate of the 3D printing mixed wettability biomimetic Namib desert beetle structure could reach 0.943 g/(cm2·h), being about 2.5 times higher than that of the 3D printing flat sample. The results show that 3D raised structures and surface wettability gradients are beneficial to improve the fog water harvesting performance of 3D printing biomimetic Namib desert beetle structure.

关键词

仿生结构 / 3D打印 / 混合润湿性 / 雾水收集 / 淡水资源

Key words

Biomimetic structure / 3D printing / Mixed wettability / Fog water harvesting / Freshwater resources

中图分类号

TP391.7

引用本文

导出引用
曹敏强 , 程惠婷 , 马永奇 , . 用于高效雾水收集的混合润湿性仿生结构研究. 塑料科技. 2025, 53(03): 7-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.002
CAO Minqiang, CHENG Huiting, MA Yongqi, et al. Research on Hybrid Wettability Biomimetic Structures for Efficient Fog Water Harvesting[J]. Plastics Science and Technology. 2025, 53(03): 7-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.03.002

参考文献

1
孟堃.二维类石墨烯反渗透膜的结构设计及其海水淡化特性研究[D].昆明:昆明理工大学,2023.
2
于晓进.城市可持续发展中的节水与水资源管理研究[J].皮革制作与环保科技,2024,5(2):177-181.
3
景欣欣,王伟铎,莫何苏,等.光热材料在太阳能海水脱盐中应用的研究进展[J].无机化学学报,2024,40(6):1033-1064.
4
赵启红.用于光热蒸发海水除盐的PS/Au/PDA泡沫的制备和性能研究[J].塑料科技,2020,48(11):58-61.
5
孙洪文,俞圣鑫,包婷婷,等.仿生微纳结构吸雾集水研究进展[J].传感器与微系统,2023,42(4):1-4, 9.
6
李雪,王艳君,王玉超,等.仿生表面用于雾水收集的最新研究进展[J].化工进展,2023,42(5):2486-2503.
7
铁生年,马晓芳,王宁峰.青藏高原沙漠化地区植物特性与分布状况分析[J].价值工程,2015,34(26):163-167.
8
斯日古楞其其格,风英.骆驼的饲养管理[J].四川畜牧兽医,2024,51(4):35-36.
9
周鹏,胡建华,李蓓.仿生表面结构设计对液滴冷凝及收集行为的影响[J].表面技术,2023,52(8):355-362, 379.
10
YU Z H, ZHANG H H, HUANG J M, et al. Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting[J]. Journal of Materials Science & Technology, 2021, 61: 85-92.
11
CHEN Z, ZHANG Z Z. Recent progress in beetle-inspired superhydrophilic-superhydrophobic micropatterned water-collection materials[J]. Water Science and Technology, 2020, 82(2): 207-226.
12
PARK J K, KIM S. Three-dimensionally structured flexible fog harvesting surfaces inspired by Namib desert beetles[J]. Micromachines, 2019, 10(3): 201.
13
王立超,李响,伊翠云,等.空天领域用3D打印纤维复合材料研究进展[J].纤维复合材料,2023,40(4):86-89.
14
IFTEKAR S F, AABID A, AMIR A, et al. Advancements and limitations in 3D printing materials and technologies: A critical review[J]. Polymers, 2023, 15(11): 2519.
15
SERRANO D R, KARA A, YUSTE I, et al. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals[J]. Pharmaceutics, 2023, 15(2): 313.
16
OSMAN A, LU J. 3D printing of polymer composites to fabricate wearable sensors: A comprehensive review[J]. Materials Science and Engineering: R: Reports, 2023, 154: 100734.
17
LI J, LI M, KOH J J, et al. 3D-printing biomimetic structures for energy and environmental applications[J]. DeCarbon, 2024, 3: 100026.
18
CHOI Y, BAEK K, SO H. 3D-printing-assisted fabrication of hierarchically structured biomimetic surfaces with dual-wettability for water harvesting[J]. Scientific Reports, 2023, 13(1): 10691.
19
PENG L H, CHEN K Q, CHEN D Y, et al. Study on the enhancing water collection efficiency of cactus-and beetle-like biomimetic structure using UV-induced controllable diffusion method and 3D printing technology[J]. RSC Advances, 2021, 11(24): 14769-14776.
20
JIANG L, GUO C, FU M, et al. Water harvesting on biomimetic material inspired by bettles[J]. Heliyon, 2023, 9(1): e12355.
21
尧婉辰,程静,孙文文,等.仿生超疏水表面的生物医学应用进展[J].复合材料学报,2023,40(10):5502-5517.
22
于法猛,段亚东,阳全美.一种3D打印光敏树脂及其制备方法: CN113527831A[P].2024-03-08.
23
LI Y X, CUI Z H, LI G Q, et al. Directional and adaptive oil self‐transport on a multi-bioinspired grooved conical spine[J]. Advanced Functional Materials, 2022, 32(27): 2201035.
24
黄艺坤,于仙,李奕飞,等.光固化3D打印机LCD屏散热方案仿真研究[J].木工机床,2023(3):19-21, 28.
25
王波群,揭晓华,雷芳,等.光固化3D打印制备PLA/β-TCP生物支架及性能[J].工程塑料应用,2023,51(8):32-38.
26
陶容,李洋,李凯龙,等.工艺参数对于LCD型3D打印成功率的影响[J].科技创新与应用,2021,11(23):46-49.
27
FISHER L, GAMBLE R, MIDDLEHURST J. The Kelvin equation and the capillary condensation of water [J]. Nature, 1981, 290(5807): 575.
28
LI X, YANG Y, LIU L, et al. 3D-printing cactus-inspired spine structures for highly efficient water collection[J]. Advanced Materials Interfaces, 2020, 7(3): 1901752.
29
FENG R, XU C, SONG F, et al. A bioinspired slippery surface with stable lubricant impregnation for efficient water harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12373-12381.
30
GENG X X, XING Y, HUAN J M, et al. Integrative bioinspired surface with annular pattern and three dimension wettable gradient for enhancement of fog collection[J]. Advanced Materials Interfaces, 2023, 10(4): 2201978.

基金

国家自然科学基金(12262011)
国家自然科学基金(52063014)

评论

PDF(2969 KB)

Accesses

Citation

Detail

段落导航
相关文章

/