城市燃气PE管道热氧老化程度的超声波智能无损检测

张琦, 汪树民, 程炜, 程林, 方雨婷, 戴梦娟

PDF(2468 KB)
PDF(2468 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 163-167. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.030
问题探讨

城市燃气PE管道热氧老化程度的超声波智能无损检测

作者信息 +

Ultrasonic Intelligent Nondestructive Test of Thermal-oxidative Aging Degree of City Gas PE Pipeline

Author information +
History +

摘要

为预防因热氧老化异常引发的燃气聚乙烯(PE)管道泄漏事故,提出管道热氧老化程度的超声波智能检测方法。提取PE管的线性和非线性超声检测特征参数,并分析其与管道热氧老化程度的关系;构建并优化BP神经网络,将超声检测特征向量和老化时间作为网络输入和输出;扩展检测特征参数并用于网络训练,训练能够评估PE管老化程度的神经网络模型。研究结果表明:由声速、声衰减、非线性系数可构成用于智能评估老化程度的超声检测特征向量,经优化并训练后的神经网络可评估PE管老化时间,老化时间评估值的平均相对误差低于6.9%。

Abstract

In order to prevent gas polyethylene (PE) pipeline leakage accident caused by abnormal thermal oxidative aging, an ultrasonic intelligent detection method for thermal oxidative aging degree of pipeline was proposed. The linear and nonlinear ultrasonic testing characteristic parameters of PE pipe wereextracted, and the relationship between the characteristic parameters and the aging degree of PE pipe was analyzed. The BP neural network was constructed and optimized, and the ultrasonic testing characteristic vector and aging time were respectively used as the input and output of the network. The testing characteristic parameters were expanded and used for network training, and the neural network model that could evaluate the aging degree of PE pipe was obtained. The results show that the acoustic velocity, acoustic attenuation and nonlinear coefficient can be used to form the characteristic vector of ultrasonic testing for intelligent evaluation of aging degree. The optimized and trained neural network can be used to evaluate the aging time of PE pipe, and the average relative error of the evaluation value of aging time is less than 6.9%.

关键词

燃气PE管道 / 超声特征参数 / 热氧老化 / BP神经网络

Key words

PE gas pipeline / Ultrasonic characteristic parameters / Thermal aging / BP neural network

中图分类号

TQ32

引用本文

导出引用
张琦 , 汪树民 , 程炜 , . 城市燃气PE管道热氧老化程度的超声波智能无损检测. 塑料科技. 2025, 53(02): 163-167 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.030
ZHANG Qi, WANG Shumin, CHENG Wei, et al. Ultrasonic Intelligent Nondestructive Test of Thermal-oxidative Aging Degree of City Gas PE Pipeline[J]. Plastics Science and Technology. 2025, 53(02): 163-167 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.030

参考文献

1
安宝钰.典型工况下城镇聚乙烯管道力学特性分析[D].北京:北京交通大学,2022.
2
HIRABAYASHI H, LGUCHI A, YAMADA K, et al. Study on the structure of peroxide cross-linked poly-ethylene pipes with several stabilizers[J]. Materials Sciences and Applications, 2013, 4(9): 497-503.
3
李园媛.建筑工程中常用塑料管材的性能对比与应用研究[J].塑料科技,2020,48(2):153-156
4
陈胜利,贺建平.基于PE燃气管道焊接工艺的研究[J].塑料科技,2018,46(1):51-54.
5
兰惠清,沙迪,孟涛,等.承压燃气聚乙烯管道热氧老化规律研究[J].天然气工业,2016,36(4):127-83.
6
KHELIF R, CHATEA UNEUF A. Reliability-based replacement of polyethylene gas pipeline networks[J]. Arabian Journal for Science and Engineering, 2014, 39(11): 8175-8185.
7
于磊.在役聚乙烯燃气管道失效可能性风险评定应用研究[J].石油和化工设备,2021,24(11):126-131
8
李朋朋,李国新,刘纲,等.耐热聚乙烯管材料L5050的分子结构与性能研究[J].塑料科技,2019,47(11):65-68
9
HUTAR P, ŠEVČÍK M. A numerical methodology for lifetime estimation of HDPE pressure pipes[J]. Engineering Fracture Mechanics, 2011, 78(17): 3049-3058.
10
FRANK A, PINTER G, LANG RW. Prediction of the remaining lifetime of polyethylene pipes after up to 30 years in use[J]. Polymer Testing, 2009, 28(7): 737-745.
11
王航,谭帼馨,谭英,等.交联聚乙烯海底电缆绝缘层热老化寿命及理化性质分析[J].高分子材料科学与工程,2015,31(3):71-75.
12
王洋.城镇燃气聚乙烯管道热氧老化寿命预测方法研究[D].北京:北京交通大学,2019.
13
张世玮,侯怀书,李宇翔,等.PE管材热老化程度的超声非线性表征[J].工程塑料应用,2020,48(12):102-106.
14
阎红娟,刘峰斌,潘勤学.金属板件中微裂纹的非线性超声表征方法研究[J].现代制造工程,2018(4):17-21.
15
ZEITVOGEL D T, MATLACK K H, KIM J Y, et al. Characterization of stress corrosion cracking in carbon steel using nonlinear Rayleigh surface waves[J]. NDT & E international, 2014, 62: 144-152.
16
袁廷璧,张曰涛,王昉.基于非线性超声的Super 304H钢高温老化状态检测研究[J].电力科技与环保,2021,37(4):20-28.
17
毛汉颖,秦国力,黎庆柱,等.45号钢受热损伤的超声非线性检测实验研究[J].振动与冲击,2020,39(21):279-283.
18
MATACK, KATHRYN H, HARRISON A, et al.Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel[J].NDT & E International, 2015, 71: 8-15
19
张智勇,张猛,陈金桂.基于改进BP神经网络的液压支架前连杆疲劳寿命预测[J].煤矿机械,2023,44(2):177-179.
20
XU J B, LIU H M, LI Q. Optimization of process parameters of preparing foamed Al-Si alloy based on Ga-based BP neural network[J]. Light Metals, 2012: 521-525.
21
董珍,林莉,孙旭.基于BP神经网络的超声表面波定量表征金属表层裂纹深度研究[J].仪器仪表学报,2019,40(8):31-38.
22
王芳红,张明达,孙益辉,等.复合绝缘子超声波探伤信号识别分类方法研究[J].电力学报,2019,34(6):571-577.
23
陈卓异,谭胜,李传习,等.声智能识别CFRP-钢界面缺陷研究[J].交通科学与工程,2023,39(2):71-79.
24
ROLOVIC R, TIPTON S M. Multiaxial cyclic ratcheting in coiled tubing[J]. Journal of Engineering Materials & Technology, 2000, 122(2): 157-161.
25
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员. 燃气用埋地聚乙烯(PE)管道系统 第1部分 管材:GB/T 15558.1—2015 [S]. 北京:中国标准出版社,2015.
26
宋勇,蔡志平.大数据环境下基于信息论的入侵检测数据归一化方法[J].武汉大学学报:理学版,2018,64(2):121-126.
27
叶飞.基于改进BP神经网络的高炉铁水硅含量预测方法[D].马鞍山:安徽工业大学,2019.
28
郭香兰,王立,金学波,等.机器学习-基于GAN和DF结合的粮食加工过程污染物小样本数据扩充及预测[J/OL].食品科学,1-16[2024-06-21].
29
毛晓敏,张慧华,纪晓磊,等.基于XFEM与BP神经网络的裂纹智能识别[J].应用力学学报,2022,39(6):1158-1167.
30
CARDOSO W, DE FELICE R, BAPTISTA R C. Artificial neural network-based committee machine for predicting the slag quality of a blast furnace fed with metallurgical coke [M]//Proceedings of the 7th Brazilian Technology Symposium. Cham:Springer International Publishing, 2022.

基金

国家市场监督管理总局科技计划项目(2022Mk065)
江西省检验检测认证总院科研项目(ZYK202203)

评论

PDF(2468 KB)

Accesses

Citation

Detail

段落导航
相关文章

/