
基于CAE技术的减速器箱体注塑成型优化分析
黄振颖, 王文星
基于CAE技术的减速器箱体注塑成型优化分析
Optimisation Analysis of Injection Moulding of Gearbox Based on CAE Technology
研究通过UG 12.0软件对减速器箱体进行三维建模,确保模型的几何形状和尺寸的精确性与完整性,为后续注塑模拟分析提供基础。模型构建后,通过Moldflow软件对聚对苯二甲酸丁二醇酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚碳酸酯(PC)进行注塑模拟分析,验证材料的注塑加工性。为了预测翘曲行为,在模拟验证阶段,将双域Tait模型和Cross-WLF模型拟合获得的参数输入Moldflow软件进行模拟计算,得出优化后的最佳工艺参数组合。模拟结果显示,在优化工艺参数下,制件翘曲变形量显著减少。PBT、ABS、PC制件的实际翘曲变形量分别减少90.32%、89.81%和90.89%。
In this study, the three-dimensional modelling of the gearbox was carried out by UG 12.0 software to ensure the accuracy and completeness of the geometry and dimensions of the model, which provided the basis for the subsequent injection moulding simulation analysis. After the model was constructed, injection moulding simulation analysis of polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene copolymer (ABS) and polycarbonate (PC) were carried out to verify the injection moulding processability through Moldflow software. In order to predict the warpage behaviour, the best combination of optimized process parameters was derived by inputting the parameters obtained from the fitting of the dual-domain Tait model and Cross-WLF model into Moldflow software for simulation calculations during the simulation verification stage. The simulation results showed that the warpage deformation of the fabricated parts was significantly reduced under the optimized process parameters. Under the optimized process parameters, the actual warpage deformation of PBT, ABS and PC parts was reduced by 90.32%, 89.81% and 90.89%, respectively.
减速器箱体 / 计算机辅助工程(CAE)技术 / 双域Tait模型 / Cross-WLF模型 / Moldflow
Gearbox / Computer-aided engineering (CAE) technology / Dual-domain Tait model / Cross-WLF model / Moldflow
TQ320.5+2 / TP391.7
1 |
王志成.PC/ABS擦丝问题机理和解决方案研究[J].当代化工研究,2024(6):93-95.
|
2 |
|
3 |
谭波.ABS自动化设备电子元器件外壳注塑成型工艺优化研究[J].塑料科技,2023,51(6):75-79.
|
4 |
周典航.基于CAE技术的医用芯片手柄注塑成型关键技术研究[D].合肥:安徽建筑大学,2023.
|
5 |
王根华,肖国华,杨少增.改性ABS观察孔盖多板模设计[J].模具技术,2023(3):64-70.
|
6 |
王金荣,王权,赵笑梅.基于Moldflow的洗衣机波轮盖翘曲分析与优化[J].塑料工业,2020,48(5):72-75, 84.
|
7 |
|
8 |
|
9 |
杨鸿.基于Moldflow的无人机上盖模流优化分析与模具设计[J].中国塑料,2020,34(6):92-99.
|
10 |
陈拓.短切碳纤维增强ABS复合材料的制备与性能研究[D].天津:天津职业技术师范大学,2024.
|
11 |
冒文娟.基于Moldflow的Cross-WLF黏度模型研究[J].塑料工业,2020,48(7):47-50.
|
12 |
|
13 |
陈开源,张斌.基于Moldflow的风机外壳翘曲优化分析[J].塑料,2020,49(3):66-69, 126.
|
14 |
苗盈,陆忠华,李薇,等.基于Moldflow软件的双色注塑成型工艺优化[J].合成树脂及塑料,2020,37(3):54-58, 94.
|
15 |
|
16 |
苑松,张雪峰,闫卫林.注塑工艺对PC/ABS检测性能影响研究[J].橡塑技术与装备,2023,49(2):41-45.
|
17 |
田梦婕,夏勋.注塑工艺对ABS热流道注塑制品翘曲变形的影响[J].现代制造技术与装备,2022,58(5):175-177.
|
18 |
徐小云,高杨,胡宝兰,等.注塑成型工艺职业病危害因素检测项目分析与建议[J].化纤与纺织技术,2022,51(3):86-88.
|
19 |
李霞.一种高韧性的ABS改性塑料成型用注塑通道.重庆:重庆辰鸿实业发展有限公司,2021-12-07.
|
20 |
王建莉,路小超,封贺,等.树突状细胞与肿瘤免疫系统相互作用研究进展[J].生命科学,2020,32(2):188-194.
|
21 |
毛江峰.汽车空调出风口注塑模优化设计[J].工程塑料应用,2022,50(1):103-108.
|
22 |
刘洋,刘长健.汽车空调出风口盖板注塑模设计[J].价值工程,2020,39(31):127-128.
|
23 |
闫竹辉,刘斌.多向抽芯汽车空调出风口壳体注塑模具设计[J].工程塑料应用,2020,48(8):93-98.
|
24 |
刘青宜,郭谭娜,王宁.基于Moldflow电机外壳注塑成型质量分析[J].塑料科技,2023,51(11):80-84.
|
25 |
杨小勇,孟祥旭,曹新鑫,等.基于Moldflow的无人机上壳注塑成型优化分析[J].塑料,2023,52(2):156-160.
|
/
〈 |
|
〉 |