塑料光纤面板的改进

刘永梅, 常桂龙, 王三昭, 石攀, 刘浩然, 明玥彤

PDF(1844 KB)
PDF(1844 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 127-130. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.023
工艺与控制

塑料光纤面板的改进

作者信息 +

Improvement of Plastic Fiber Optic Panel

Author information +
History +

摘要

聚甲基丙烯酸甲酯(PMMA)透明度较好。采用PMMA为原料,通过预制聚合物光纤棒,拉制成丝,排板热压方式制备塑料光纤面板。结果表明:随保温时间的增加,塑料光纤面板成像性能呈现先提高后降低的趋势,最佳保温时间为6 h,比理论保温时间多2 h。调整聚合物光纤棒的预制工艺,制备表面干净的复丝,可以减少杂质对复丝边界的影响,降低热压压力,减少下压刻度,制备成像清晰、完整的塑料光纤面板。该方法能够减小光纤面板的生产成本和质量较轻。

Abstract

Poly(methyl methacrylate) (PMMA) has good transparency. Using PMMA as the raw material, plastic optical fiber panels were prepared by prefabricating polymer fiber rods, drawing them into fibers, and then hot-pressing them into panels. The results showed that as the holding time increased, the imaging performance of the plastic optical fiber panel first improved and then decreased. The optimal holding time was 6 h, which is 2 h longer than the theoretical holding time. Adjusting the prefabrication process of the polymer fiber rods to produce clean-surfaced multifilaments can reduce the impact of impurities on the boundaries of the multifilaments, lower the hot-pressing pressure, and decrease the pressing scale. This leads to the production of plastic optical fiber panels with clear and complete imaging. This method can reduce the production cost of fiber panels and result in a lighter product weight.

关键词

光纤面板 / 塑料光纤 / 成像 / 数值孔径

Key words

Fiber optic panel / Plastic optical fibre / Image formation / Numerical aperture

中图分类号

TN253

引用本文

导出引用
刘永梅 , 常桂龙 , 王三昭 , . 塑料光纤面板的改进. 塑料科技. 2025, 53(02): 127-130 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.023
LIU Yongmei, CHANG Guilong, WANG Sanzhao, et al. Improvement of Plastic Fiber Optic Panel[J]. Plastics Science and Technology. 2025, 53(02): 127-130 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.023

参考文献

1
王金猛,孔德鹏,王丽莉.大尺寸聚合物光纤面板制造新技术的初步研究[J].物理学报,2012,61(5):249-255.
2
何相平,苏展民,骆志财,等.硬光纤传像元件的特性及其应用[J].广东科技,2016,25(6):51-53.
3
苏展民.高分辨光纤倒像器的制备与传像性能研究[D].广州:华南理工大学,2017.
4
刘书异,杨炳辰,王国政,等.基于硅微通道阵列的光纤面板制备[J].光电子技术,2021,41(3):175-179.
5
郭晖,向世明,田民强.微光夜视技术发展动态评述[J].红外技术,2013,35(2):63-68.
6
李佳隆,刘秀玲,秦鼎然,等.柔性光纤束酸溶玻璃的组成及酸溶机理[J].硅酸盐学报,2018,46(11):1513-1518.
7
李响,梁中翥,郭鹏,等.光纤传像束研究进展[J].光机电信息,2009,26(7):24-31.
8
KIM D, MOON J, KIM M, et al. Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle[J]. Optics Letters, 2014, 39(7): 1921-1924.
9
赵艳红,张静,周军,等.光纤技术及其应用[J].信息通信,2019(1):274-275.
10
王敏敏,王荣康,王春艳.塑料光纤研发和生产进展[J].上海塑料,2023,51(6):14-17.
11
刘宇轩,谢建达.聚合物光纤通信及传感研究进展[J].激光技术,2024,48(4):505-520.
12
SOGE A O, DAIRO O F, SANYAOLU M E, et al. Recent developments in polymer optical fiber strain sensors: A short review[J]. Journal of Optics, 2021, 50: 299-313.
13
AKASHI T, INOUE A, KOIKE Y. Low-noise graded-index plastic optical fiber achieved by specific copolymerization process[J]. Journal of Lightwave Technology, 2021, 39(11): 3553-3559.
14
LEAL-JUNIOR A G, MARQUES C, FRIZERA A, et al. Dynamic mechanical analysis on a polymethyl methacrylate (PMMA) polymer optical fiber[J]. IEEE Sensors Journal, 2018, 18(6): 2353-2361.
15
ARCAS A S, DUTRA F S, ALLIL R C S B, et al. Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors[J]. Sensors, 2018, 18(2): 648.
16
INOUE A, KOIKE Y. Low-noise graded-index plastic optical fiber for significantly stable and robust data transmission[J]. Journal of Lightwave Technology, 2018, 36(24): 5887-5892.
17
闵锐,何润杰,李小俚.聚合物光纤光栅制备及应用进展[J].激光与光电子学进展,2021,58(13):290-305.
18
Leal-Junior A G, Marques C, Frizera A, et al. Dynamic mechanical analysis on a polymethyl methacrylate (pmma) polymer optical fiber[J]. IEEE Sensors Journal, 2018, 18(6): 2353-2361.
19
李四红.塑料光纤在通信技术的应用[J].山东化工,2017,46(20):96-98.
20
孙学耕.塑料光纤技术在通信技术中的应用[J].塑料工业,2019,47(9):157-159.
21
YAHAV I, SHEFFI N, BIOFCIC Y, et al. Multi-gigabit spatial-division multiplexing transmission over multicore plastic optical fiber[J]. Journal of Lightwave Technology, 2021: 2296-2304.
22
LEE B, CHOI W Y, WALKER J K. Ultrahigh-resolution plastic graded-index fused image plates[J]. Optics Letters, 2000, 25(10): 719-721.
23
孔德鹏,王丽莉.传像光纤,光纤面板及光锥制造新方法探索[J].光子学报,2009,38(11):2913-2916.
24
孔德鹏,张大明,袁苑,等.塑料光纤的研究与应用进展[J].光子学报,2019,48(11):66-80.
25
孔德鹏.微结构光学元器件的设计、制作与应用关键技术研究[D].西安:中国科学院研究生院(西安光学精密机械研究所),2014.
26
周德春,于凤霞,谭芳,等.大数值孔径传像光纤的制备及其光学性能研究[J].激光与光电子学进展,2010,47(12):34-37.
27
曾文茹,李疏芬,周允基.聚甲基丙烯酸甲酯的热降解研究进展[J].高分子材料科学与工程,2003,19(3):12-16.
28
吕国君.浅析聚甲基丙烯酸甲酯的热降解研究[J].内蒙古石油化工,2010,36(9):94-95.
29
毕经亮,任玲玲,尹宗杰,等.热扩散系数参考物质的研制及应用[J].工业计量,2023,33(5):1-5.
30
姚金水.高分子物理[M].北京:化学工业出版社,2016.

评论

PDF(1844 KB)

Accesses

Citation

Detail

段落导航
相关文章

/