可降解聚(乙交酯-共-己内酯)共聚酯的合成与性能研究

尹甜, 杜晓强, 刘田园, 徐军

PDF(2057 KB)
PDF(2057 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 103-110. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.019
生物与降解材料

可降解聚(乙交酯-共-己内酯)共聚酯的合成与性能研究

作者信息 +

Synthesis and Properties Study of Biodegradable Poly(glycolide-co-caprolactone) Copolyesters

Author information +
History +

摘要

聚乙醇酸(PGA)具有优异的降解性能和机械强度,然而较差的韧性在一定程度上阻碍其应用。为了充分利用PGA优异的降解性能和机械强度,同时提高PGA的韧性和加工性能,从分子链结构出发,通过乙交酯与ε-己内酯的开环聚合的方式制备聚(乙交酯-共-己内酯)(PGACL)共聚酯,并进一步通过扩链剂1,4-丁二醇缩水甘油醚(BDE)调节共聚物的性能。在确定引发剂最佳用量的前提下,研究共聚酯中乙交酯含量和扩链剂用量对共聚酯力学性能、热性能、降解性能的影响。结果表明:乙交酯含量的增加可显著提高共聚酯的热性能、结晶性能和机械强度,而扩链剂的引入大幅度提高了PGACL的韧性,同时合成的PGACL共聚酯具有良好的降解性能。

Abstract

Polyglycolic acid (PGA) has excellent degradation performance and mechanical strength, but its poor toughness limits its further application to some extent. In order to fully utilize the excellent degradation performance and mechanical strength of PGA, and to improve its toughness and processing performance, a copolymer of poly(glycolide-co-caprolactone) copolyesters (PGACL) was prepared through the ring-opening polymerization of glycolide and ε-caprolactone, starting from the molecular chain structure. The properties of PGACL were further regulated by the chain extender 1,4-butanediol glycidyl ether (BDE). By determining the optimal amount of initiator, the effects of the content of glycolide and chain extender on the mechanical properties, thermal properties, and degradation performance of copolyesters were studied. The results showed that increasing the glycolide content significantly enhanced the thermal properties, crystallinity, and mechanical strength of the copolyester. The introduction of the chain extender greatly improved the toughness of PGACL, while the synthesized PGACL copolymer maintained good degradability.

关键词

聚(乙交酯-共-己内酯) / 聚乙醇酸 / 乙交酯 / 扩链剂 / 降解

Key words

Poly(glycolide-co-caprolactone) / PGA / Glycolide / Chain extender / Biodegradation

中图分类号

TB324

引用本文

导出引用
尹甜 , 杜晓强 , 刘田园 , . 可降解聚(乙交酯-共-己内酯)共聚酯的合成与性能研究. 塑料科技. 2025, 53(02): 103-110 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.019
YIN Tian, DU Xiaoqiang, LIU Tianyuan, et al. Synthesis and Properties Study of Biodegradable Poly(glycolide-co-caprolactone) Copolyesters[J]. Plastics Science and Technology. 2025, 53(02): 103-110 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.019

参考文献

1
严冰,赵耀明.聚丙交酯及可降解脂肪族聚酯类纤维的结构与生物降解性能[J].合成纤维,2000(3):16⁃19.
2
董露茜,徐芳,翁云宣.聚乙醇酸改性及其应用研究进展[J].中国塑料,2022,35(4):166-174.
3
SAMANTARAY P K, LITTLE A, HADDLETON D M, et al. Poly(glycolic acid) (PGA): A versatile building block expanding high performance and sustainable bioplastic applications[J]. Green Chemistry, 2020, 22(13): 4055-4081.
4
NIU D Y, WANG H, LIU B, et al. Crystal structure of poly(glycolic acid) β form[J]. Macromolecules, 2023, 56(21): 8767-8775.
5
NIU D Y, WANG H, MA Y, et al. A β-form crystal modification of poly(glycolic acid): Formation, stabilization, and β-α transition[J]. Macromolecules, 2023, 56(16): 6316-6327.
6
CHU C C. Differential scanning calorimetric study of the crystallization kinetics of polyglycolic acid at high undercooling[J]. Polymer,1980, 21(12): 1480-1482.
7
YU C T, BAO J N, PAN P J, et al. Crystallization behavior and crystalline structural changes of polyIJglycolic acid) investigated via temperature-variable WAXD and FTIR analysis[J]. Cryst Eng Comm, 2016, 18(40): 7894-7902.
8
SATO H, MAI M D, YAMAMOTO S K, et al. C-H/O(ether) hydrogen bonding along the (110) direction in polyglycolic acid studied by infrared spectroscopy, wide-angle X-ray diffffraction, quantum chemical calculations and natural bond orbital calculations[J]. Cryst Eng Comm, 2016, 18: 7894-7902.
9
NIU D Y, XU P W, XU S J, et al. Robust poly(glycolic acid) films with crystal orientation and reinforcement of chain entanglement network[J]. Chinese Journal of Polymer Science, 2023, 41: 1093-1103.
10
谭博雯,孙朝阳,计扬.聚乙醇酸的合成、改性与性能研究综述[J].中国塑料,2021,35(10):137-146.
11
田虎虎,曹鸿璋,郭立影,等.完全生物降解聚乙醇酸研究进展[J].橡塑技术与装备,2021,47(22):9-15.
12
YAMANE K, SATO H, ICHIKAWA Y, et al. Development of an industrial production technology for high-molecular-weight polyglycolic acid[J]. Polymer Journal, 2014, 46: 769-775.
13
陈群,许平,崔爱军.煤基聚乙醇酸技术进展[J].化工进展,2011,30(1):172-180.
14
李建军.2022年中国可降解塑料行业研究报告[J].中国石油和化工,2022(12):20.
15
冯申,温亮,孙朝阳.PGA/PBAT复合材料的性能及应用研究[J].中国塑料,2020,34(11):36-40.
16
XU P W, TAN S, NIU D Y, et al. Highly toughened sustainable green polyglycolic acid/ polycaprolactone blends with balanced strength: Morphology evolution, interfacial compatibilization, and mechanism[J]. ACS Applied Polymer Materials, 2022, 4(8): 5772-5780.
17
CHANG L F, ZHOU Y G, NING Y, et al. Toughening effect of physically blended polyethylene oxide on Polygly-colic acid[J]. Journal of Polymers and the Environment,2020,28(8):2125-2136.
18
华幼卿,金日光.高分子物理[M].北京:化学工业出版社,2019.
19
DOBRZYNSKI P, LI S, KASPERCZYK J, et al. Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone. part 1. synthesis and characterization[J]. Biomacromolecules, 2005, 6: 483-488.
20
MARTINE T, ALAIN F. Determination of the degree of randomness in condensation copolymers containing both symmetrical and unsymmetrical monomer units: A theoretical study[J]. e-Polymers, 2003, 3(1): 030.
21
LIU T Y, XU P Y, HUANG D, et al. Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid/glycolic acid: Composting degradation, seawater degradation behavior and comparison of degradation mechanism[J]. Journal of Hazardous Materials, 2023, 446: 130670.
22
CHU C C. Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study[J]. Journal of Applied Polymer Science, 1981, 26(5): 1727-1734.
23
HURRELL S, MILROY G E, CAMERON R E. The degradation of polyglycolide in water and deuterium oxide. part 1: The effect of reaction rate[J]. Polymer, 2003, 44(5): 1421-1424.
24
GÖKTÜRK E, PEMBA A G, MILLER S A. Polyglycolic acid from the direct polymerization of renewable C1 feedstocks[J]. Polymer Chemistry, 2015, 6: 3918-3925.
25
HURRELL S, MILROY G E, CAMERON R E. The distribution of water in degrading polyglycolide. Part Ⅱ: Sample size and drug release[J]. Journal of Materials Science: Materials in Medicine, 2003, 14(5): 457-464.
26
TSUJI H. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience, 2005, 5(7): 569-597.
27
TSUJI H. In vitro hydrolysis of blends from enantiomeric poly(lactide)s part 1. Well-stereo-complexed blend and non-blended films[J]. Polymer, 2000, 41(10): 3621-3630.
28
LAYCOCK B, NIKOLIC´ M, COLWELL J M, et al. Lifetime prediction of biodegradable polymers[J]. Progress in Polymer Science, 2017, 71: 144-189.
29
LIU T Y, DAN H, JI J J, et al. Biobased seawater-degradable poly(butylene succinate-L-lactide) copolyesters: exploration of degradation performance and degradation mechanism in natural seawater[J]. ACS Sustainable Chemistry & Engineering, 2022, 10: 3191-3202.
30
WOODARD L N, GRUNLAN M A. Hydrolytic degradation and erosion of polyester biomaterials[J]. 2018, 7: 976-982.
31
SHAWE S, BUCHANAN F, HARKIN-JONES E, et al. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA)[J]. Journal of Materials Science, 2006, 41(15): 4832-4838.

基金

国家能源集团2030重大项目先导项目(GJNY2030XDXM-19-15.4)
国家重点研发计划项目(2023YFB4103300)

评论

PDF(2057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/