矿粉种类对PBAT/PLA共混物力学与散发性能的影响

陈业中, 龚德君, 付学俊, 李建军, 曾祥斌, 欧阳春平

PDF(1465 KB)
PDF(1465 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 97-102. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.018
生物与降解材料

矿粉种类对PBAT/PLA共混物力学与散发性能的影响

作者信息 +

Influence of Mineral Powder Types on Mechanical and Emission Properties of Poly(Butylene Adipate-co-Terephthalate)/Polylactic Acid Blends

Author information +
History +

摘要

采用熔融共混法制备聚对苯二甲酸-己二酸丁二醇酯(PBAT)、聚乳酸(PLA)和无机矿粉的共混物,探究矿粉种类对于PBAT/PLA薄膜力学性能与散发性能的影响。结果表明:当滑石粉的粒径足够小时,对应的PBAT/PLA薄膜的拉伸强度优于添加相同含量碳酸钙的PBAT/PLA薄膜。随着滑石粉的D50粒径从2.5 μm上升至10 μm,PBAT/PLA薄膜纵向与横向的拉伸强度逐步下降。撕裂与落镖测试发现,添加碳酸钙的PBAT/PLA薄膜韧性最优,这是因为碳酸钙一般采用硬脂酸包覆活化,可以有效地将碳酸钙分散至基体中,撕裂时可以有效地承担外部的应力。随着滑石粉粒径增大,PBAT/PLA薄膜韧性下降。云母、晶须和硅灰石在共混体系中分散不良,因此膜面存在较多的缺陷点,PBAT/PLA薄膜韧性较差。滑石粉填充的PBAT/PLA薄膜气味等级总体低于碳酸钙填充的PBAT/PLA薄膜,且雾化后“油污”现象较轻微。但高粒径滑石粉或者云母、晶须和硅灰石在共混时与基体间具有强剪切作用,生成的总挥发性有机化合物(TVOC)以及部分挥发性有机化合物(VOC)含量较大。

Abstract

The melt-blending method was employed to prepare blends of poly(butylene adipate-co-terephthalate) (PBAT), polylactic acid (PLA), and inorganic mineral powders, with the aim of investigating the effects of different mineral powders on the mechanical and emission properties of PBAT/PLA films. The results showed that when the particle size of talcum powder was sufficiently small, the tensile strength of the corresponding PBAT/PLA film was superior to that of PBAT/PLA films containing the same amount of calcium carbonate. As the D50 particle size of talcum powder increased from 2.5 μm to 10 μm, the tensile strength of the PBAT/PLA film in both the longitudinal and transverse directions gradually decreased. Tear and dart impact tests revealed that PBAT/PLA films containing calcium carbonate exhibited the best toughness. This is because calcium carbonate is generally surface-treated with stearic acid, which effectively disperses it within the matrix and allows it to effectively bear external stress during tearing. As the particle size of talcum powder increased, the toughness of the PBAT/PLA film decreased. Mica, whiskers, and wollastonite showed poor dispersion in the blend system, resulting in numerous defect points on the film surface and poor toughness of the PBAT/PLA film. PBAT/PLA films filled with talcum powder had a lower overall odor level compared to those filled with calcium carbonate, and exhibited a milder "oil stain" phenomenon after fogging. However, high-particle-size talcum powder, as well as mica, whiskers, and wollastonite, generated significant shear forces with the matrix during blending, leading to higher levels of total volatile organic compounds (TVOC) and certain volatile organic compounds (VOCs).

关键词

聚对苯二甲酸己二酸丁二醇酯 / 聚乳酸 / 矿粉 / 气味 / 挥发性有机化合物

Key words

Poly(butylene adipate-co-terephthalate) / Polylactic acid / Mineral powder / Odor / Volatile organic compounds

中图分类号

TB324

引用本文

导出引用
陈业中 , 龚德君 , 付学俊 , . 矿粉种类对PBAT/PLA共混物力学与散发性能的影响. 塑料科技. 2025, 53(02): 97-102 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.018
CHEN Yezhong, GONG Dejun, FU Xuejun, et al. Influence of Mineral Powder Types on Mechanical and Emission Properties of Poly(Butylene Adipate-co-Terephthalate)/Polylactic Acid Blends[J]. Plastics Science and Technology. 2025, 53(02): 97-102 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.018

参考文献

1
LIU E K, HE W Q, YAN C R. 'White revolution' to 'white pollution'—Agricultural plastic film mulch in China[J]. Environmental Research Letters, 2014, 9: 091001.
2
XANTHOSD, WALKERT R. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review[J]. Marine Pollution Bulletin, 2017, 118: 17-26.
3
CHAE Y, AN Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J]. Environmental Pollution, 2018, 240: 387-395.
4
DIANA K. Three ways to solve the plastics pollution crisis[J]. Nature, 2023, 616(7956): 234-237.
5
MACLEOD M, ARPH P H, TEKMANM B, et al. The global threat from plastic pollution[J]. Science, 2021, 373: 61-65.
6
BOZELL J J. Feedstocks for the future—Biorefinery production of chemicals from renewable carbon[J]. CLEAN-Soil, Air, Water, 2008, 36: 641-647.
7
LARRAÑAGAA, LIZUNDIAE. A review on the thermomechanical properties and biodegradation behaviour of polyesters[J]. European Polymer Journal, 2019, 121: 109296.
8
SHIGEMOTOI, KAWAKAMIT, TAIKOH, et al. A quantum chemical study on the thermal degradation reaction of polyesters[J]. Polymer Degradation and Stability, 2012, 97(6): 941-947.
9
POLYÁK P, SZEMERSZKI D, VÖRÖS G, et al. Mechanism and kinetics of the hydrolytic degradation of amorphous poly(3-hydroxybutyrate)[J]. Polymer Degradation and Stability, 2017, 140: 1-8.
10
BOROVIKOVP I, SVIRIDOVA P, ANTONOVE N, et al. Model of aliphatic polyesters hydrolysis comprising water and oligomers diffusion[J]. Polymer Degradation and Stability, 2019, 159: 70-78.
11
FALKENSTEIN P, ZHAO Z Y, DI PEDE-MATTATELLI A, et al. On the binding mode and molecular mechanism of enzymatic polyethylene terephthalate degradation[J]. ACS Catalysis, 2023, 13(10): 6919-6933.
12
HU H, LUAN Q Y, LI J Y, et al. High-molecular-weight and light-colored disulfide-bond-embedded polyesters: Accelerated hydrolysis triggered by redox responsiveness[J]. Biomacromolecules, 2023, 24(12): 5722-5736.
13
DRUMRIGHTR E, GRUBERP R, HENTOND E. Polylactic acid technology[J]. Advanced Materials, 2000, 12: 1841-1846.
14
ARRIETAM, SAMPERM, ALDASM, et al. On the use of PLA-PHB blends for sustainable food packaging applications[J]. Materials, 2017, 10: 1008.
15
BURGOSN, ARMENTANOI, FORTUNATIE, et al. Functional properties of plasticized bio-based poly(lactic acid)_poly(hydroxybutyrate) (PLA_PHB) films for active food packaging[J]. Food and Bioprocess Technology, 2017, 10: 770-780.
16
STLOUKALP, KALENDOVAA, MATTAUSCHH, et al. The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites[J]. Polymer Testing, 2015, 41: 124-132.
17
OLADAPO B I, DANIYAN I A, IKUMAPAYI O M, et al. Microanalysis of hybrid characterization of PLA/cHA polymer scaffolds for bone regeneration[J]. Polymer Testing, 2020, 83: 106341.
18
XU C H, YUAN D S, FU L H, et al. Physical blend of PLA/NR with co-continuous phase structure: Preparation, rheology property, mechanical properties and morphology[J]. Polymer Testing, 2014, 37: 94-101.
19
CHEN W W, QI C Z, LI Y, et al. The degradation investigation of biodegradable PLA/PBAT blend: Thermal stability, mechanical properties and PALS analysis[J]. Radiation Physics and Chemistry, 2021, 180: 109239.
20
CAMANI P H, SOUZA A G, BARBOSA R F S, et al. Comprehensive insight into surfactant modified-PBAT physico-chemical and biodegradability properties[J]. Chemosphere, 2021, 269: 128708.
21
BOONPRASERTPOH A, PENTRAKOON D, JUNKASEM J. Investigating rheological, morphological and mechanical properties of PBS/PBAT blends[J]. Journal of Metals, Materials and Minerals, 2017, 27(1): 1-11.
22
SILVA BARBOSA R F DA, DE SOUZA A G, RANGARI V, et al. The influence of PBAT content in the nanocapsules preparation and its effect in essential oils release[J]. Food Chemistry, 2021, 344: 128611.
23
马祥艳,王翔宇,李莉,等.PLA/PBAT/纳米碳酸钙三元复合材料的微观形貌与性能[J].塑料,2017,46(5):93-97.
24
AFRAMEHR W M, MOLKI B, HEIDARIAN P, et al. Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid[J]. Fibers and Polymers, 2017, 18(11): 2041-2048.
25
刘逸涵,边俊甲,潘宏伟,等.铝酸酯改性碳酸钙提高聚乳酸的韧性和生物降解性[J].塑料科技,2020,48(5):60-65.
26
付倩,郑雨欣,张雪蕊,等.成核剂和扩链剂对PLA/PBAT共混体系性能影响[J].塑料科技,2021,49(12):42-46.
27
孙静,黄安荣,罗珊珊,等.扩链剂对PBAT/Talc复合材料性能影响研究[J].塑料科技,2021,49(8):1-6.
28
程文超,付伟,陈胜杰,等.硬脂酸锌对车用聚丙烯复合材料性能影响[J].工程塑料应用,2020,48(9):133-137.
29
胡金妮.车用低散发聚丙烯的研究[D].广州:华南理工大学,2018.

基金

国家重点研发计划项目(2022YFC3901805)

评论

PDF(1465 KB)

Accesses

Citation

Detail

段落导航
相关文章

/