PEI功能化中空介孔二氧化硅掺杂PLA复合膜的制备及性能研究

辛宇, 纪嘉琦, 王丽, 侯景魁, 宋立新, 王元霞, 李先亮

PDF(2241 KB)
PDF(2241 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 91-96. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.017
生物与降解材料

PEI功能化中空介孔二氧化硅掺杂PLA复合膜的制备及性能研究

作者信息 +

Preparation and Performance Study of PLA Composite Films Doped with PEI-functionalized Hollow Mesoporous Silica

Author information +
History +

摘要

聚乳酸(PLA)是一种生物可降解聚合物,具有良好的生物相容性和生物可降解性,但其延展性差、力学性能差等缺点限制其应用范围。因此,制备聚乙烯亚胺(PEI)改性的树突状中空介孔二氧化硅微球(PEI-HMSN),通过溶液浇铸法掺杂到PLA基体中,制备复合膜PLA/PEI-HMSN,详细研究复合膜的热力学性能、光学性能和疏水性能。结果表明:PEI-HMSN能够较为均匀地分散在PLA基体中,PLA/PEI-HMSN复合膜的断裂伸长率和拉伸强度得到提高,疏水性有所提高。经PEI改性的HMSN对PLA膜的性能有提升作用,为PLA在包装领域的应用提供实验依据。

Abstract

Polylactic acid (PLA) is a biodegradable polymer with good biocompatibility and biodegradability, but its poor ductility, poor air tightness and other shortcomings limit its application scope. Therefore, polyethyleneimine (PEI) modified dendritic hollow mesoporous silica microspheres (PEI-HMSN) were prepared and doped into PLA matrix by solution pouring method to prepare a composite film (PLA/PEI-HMSN). The effects of thermal, optical and hydrophobic properties of composite films were studied in detail. The results showed that PEI-HMSN can be uniformly dispersed in PLA matrix, and the elongation at break and tensile strength of PLA/PEI-HMSN composite film were improved. The hydrophobicity of PLA/PEI-HMSN composite film was improved. The PEI modified HMSN can improve the performance of PLA film, which provides an experimental basis for the application of PLA in packaging field.

关键词

聚乳酸 / 二氧化硅 / 中空结构 / 聚乙烯亚胺 / 复合膜

Key words

PLA / Silica dioxide / Hollow structure / Polyethyleneimine / Composite film

中图分类号

TQ323.4 / TQ327.9

引用本文

导出引用
辛宇 , 纪嘉琦 , 王丽 , . PEI功能化中空介孔二氧化硅掺杂PLA复合膜的制备及性能研究. 塑料科技. 2025, 53(02): 91-96 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.017
XIN Yu, JI Jiaqi, WANG Li, et al. Preparation and Performance Study of PLA Composite Films Doped with PEI-functionalized Hollow Mesoporous Silica[J]. Plastics Science and Technology. 2025, 53(02): 91-96 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.017

参考文献

1
宋志勇,马艺宁,姚倩儒,等.SiO2含量与粒径对PLA/SiO2复合膜性能的影响[J].包装工程,2021,42(21):120-126.
2
张丽媛,韦存茜,杨建平.可降解塑料在食品相关产品方面的应用及质量安全要求[J].食品安全质量检测学报,2020,11(7):2303-2308.
3
王鑫,石敏,余晓磊,等.聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J].材料导报,2019,33(11):1897-1909.
4
方建波,翟光群,陈肖博,等.聚乳酸/纳米SiO2复合材料的非等温冷结晶行为[J].塑料科技,2014,42(11):91-95.
5
LU Y, OZCAN S. Green nanomaterials: On track for a sustainable future [J]. Nano Today, 2015, 10(4): 417-420.
6
何小芳,周会鸽,刘源,等.纳米二氧化硅改性聚丙烯复合材料研究进展[J].中国塑料,2012,26(9):11-16.
7
陈廷.纳米二氧化硅改性聚乳酸/剑麻纤维复合材料的制备及表征[J].塑料科技,2020,48(11):33-36.
8
邓国宏,余立新,郝继华,等.聚乙烯醇/二氧化硅共混膜的制备及耐温、耐溶剂性能研究[J].高分子材料科学与工程,2001(6):122-125.
9
范丹丹,张凤姣,王旭巍,等.聚乙烯醇-SiO2/聚酯无纺布膜的制备及性能研究[J].水处理技术,2021,47(3):73-77.
10
WAY C, DEAN K, WU D Y, et al. Biodegradation of sequentially surface treated lignocellulose reinforced polylactic acid composites: Carbon dioxide evolution and morphology[J]. Polymer degradation and stability, 2012, 97(3): 430-438.
11
RAY S S, YAMADA K, OKAMOTO M, et al. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology[J]. Polymer, 2003, 44(3): 857-866.
12
JORDA-BENEYTO M, ORTUñO N, DEVIS A, et al. Use of nanoclay platelets in food packaging materials: Technical and cytotoxicity approach[J]. Food Additives & Contaminants: Part A, 2014, 31(3): 354-363.
13
XU Z H, ZHANG Y Q, WANG Z G, et al. Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(ε-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4858-4864.
14
XU Z, NIU Y, WANG Z, et al. Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios[J]. ACS Applied Materials & Interfaces, 2011, 3(9): 3744-3753.
15
GAO Y, PICOT O T, BILOTTI E, et al. Influence of filler size on the properties of poly(lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites[J]. European Polymer Journal, 2017, 86: 117-131.
16
KIM I H, JEONG Y G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity[J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(8): 850-858.
17
SIENGCHIN S. Reinforced flax mat/modified polylactide (PLA) composites: Impact, thermal, and mechanical properties[J]. Mechanics of Composite Materials, 2014, 50: 257-266.
18
SONG Y N, LIU J, CHEN S Z, et al. Mechanical properties of poly(lactic acid)/hemp fiber composites prepared with a novel method[J]. Journal of Polymers and the Environment, 2013, 21: 1117-1127.
19
KRIKORIAN V, POCHAN D J. Poly(L-lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties[J]. Chemistry of materials, 2003, 15(22): 4317-4324.
20
TSAI P A, CHIU W M, LIN C E, et al. Fabrication and characterization of PLA/SiO2/Al2O3 composites prepared by sol-gel process[J]. Polymer-Plastics Technology and Engineering, 2013, 52(14): 1488-1495.
21
WU J H, YEN M S, KUO M, et al. Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites[J]. Materials Chemistry and Physics, 2013, 142(2-3): 726-733.
22
LIU X J, JIA J F, DUAN S L, et al. Zein/MCM-41 nanocomposite film incorporated with cinnamon essential oil loaded by modified supercritical CO2 impregnation for long-term antibacterial packaging[J]. Pharmaceutics, 2020, 12(2): 169.
23
ANANTHI N, VARGHESE J, SAKTHIPRIYA P, et al. Polylactic acid coated SBA-15 functionalized with 3-aminopropyl triethoxysilane[J]. Indian Journal of Chemistry-Section A (IJCA), 2020, 56(6): 621-625.
24
ROY S, RHIM J W. Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application [J]. International Journal of Biological Macromolecules, 2020, 162: 1780-1789.
25
XIA L J, SONG J H, WANG H, et al. Silica nanoparticles reinforced natural rubber latex composites: The effects of silica dimension and polydispersity on performance[J]. Journal of Applied Polymer Science, 2019, 136(18): 47449.
26
JOSE J P, CHAZEAU L, CAVAILLé J Y, et al. Nucleation and nonisothermal crystallization kinetics in cross-linked polyethylene/zinc oxide nanocomposites[J]. RSC Advances, 2014, 4: 31643-31651.

基金

国家自然科学基金(22005203)
辽宁省教育厅面上项目(LJKZ0454)
沈阳先进涂层材料产业技术研究院项目(2021210101002264)

评论

PDF(2241 KB)

Accesses

Citation

Detail

段落导航
相关文章

/