疏水ZnS/PVDF复合膜材料的制备及其催化性能研究

张琼, 智芳芳

PDF(1007 KB)
PDF(1007 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 86-90. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.016
加工与应用

疏水ZnS/PVDF复合膜材料的制备及其催化性能研究

作者信息 +

Study on Preparation and Catalytic Properties of Hydrophobic ZnS/PVDF Composite Membrane Materials

Author information +
History +

摘要

研究通过在疏水聚偏氟乙烯(PVDF)膜上负载一定量的硫化锌(ZnS)光催化剂进行共混改性,制备ZnS/PVDF复合膜材料,并对其亲水性、催化活性以及催化机理进行探讨。结果表明:添加质量分数6% ZnS的复合膜材料(ZnS/PVDF-3)在亲水性、渗透性、分离性能和抗污染性能方面均表现最优,其纯水通量达到302.5 L/(m2·h),对牛血清蛋白(BSA)的截留率能够达到92.5%。在抗污染性能方面,ZnS/PVDF-3能够达到70.6%的通量恢复率。在光催化降解性能测试中,相比纯PVDF膜,ZnS/PVDF-3也能保持优异的降解效果,其对甲基橙和刚果红染料的降解率分别为90.2%和91.1%。在耐久性测试中,ZnS/PVDF-3表现出优异的循环催化效果和耐酸碱性能,在经历了5次循环之后或者在溶液pH值为2~14的条件下均能够保持75%以上的降解率。研究表明,ZnS/PVDF复合膜材料能够在降解染料废水方面得到广泛应用。

Abstract

In this study, ZnS/PVDF composite membrane materials were prepared by blending and modifying a certain amount of Zinc sulfide (ZnS) photocatalyst on a hydrophobic polyvinylidene fluoride (PVDF) membrane, and their hydrophilicity, catalytic activity and catalytic mechanism were discussed. The results showed that the composite membrane material with 6% mass fraction of ZnS (ZnS/PVDF-3) had the best performance in terms of hydrophilicity, permeability, separation performance and anti-fouling performance, and its pure water flux could reach 302.5 L/(m2‧h), and the rejection rate of bovine serum protein (BSA) could reach 92.5%. In terms of anti-fouling performance, ZnS/PVDF-3 is able to achieve a flux recovery rate of 70.6%. In the photocatalytic degradation performance test, compared with pure PVDF membranes, ZnS/PVDF-3 can also maintain excellent degradation effects, with degradation rates of 90.2% and 91.1% for methyl orange and Congo red dyes, respectively. In the durability test, the ZnS/PVDF-3 showed excellent cycle catalytic effect and acid and alkali resistance, and the degradation rate of more than 75% could be maintained after five cycles or under the condition of solution pH value of 2~14. The study indicates that ZnS/PVDF composite membrane material can be widely used in degrading dye wastewater.

关键词

硫化锌 / PVDF复合膜 / 光催化 / 耐久性

Key words

ZnS / PVDF composite membrane / Photocatalysis / Durability

中图分类号

TQ051.8 / X703

引用本文

导出引用
张琼 , 智芳芳. 疏水ZnS/PVDF复合膜材料的制备及其催化性能研究. 塑料科技. 2025, 53(02): 86-90 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.016
ZHANG Qiong, ZHI Fangfang. Study on Preparation and Catalytic Properties of Hydrophobic ZnS/PVDF Composite Membrane Materials[J]. Plastics Science and Technology. 2025, 53(02): 86-90 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.016

参考文献

1
任南琪,周显娇,郭婉茜,等.染料废水处理技术研究进展[J].化工学报,2013, 64(1): 84-94.
2
杨凯璐,陈明星,王新亚,等.染料废水处理用纳滤膜制备及改性研究进展[J].化工进展,2023,42(10):5470-5486.
3
张皓阳,李明,王军.PA/PET/PDA/PVDF复合纳滤膜制备及其处理染料废水的研究[J].工业水处理,2023,43(10):150-156.
4
李泽辉,崔恒,王军.氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J].化工进展,2021,40():456-465.
增刊1
5
PENBOON L, KHRUEAKHAM A, SAIRIAM S. TiO2 coated on PVDF membrane for dye wastewater treatment by a photocatalytic membrane[J]. Water Science and Technology, 2019, 79(5): 958-966.
6
GHOLAMI S, LLACUNA J L, VATANPOUR V, et al. Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment[J]. Chemosphere, 2022, 294: 133699.
7
高柯玄,杨禹,柴怡然,等.可见光响应的CBM/PVDF自清洁催化膜制备及性能[J].中国环境科学,2025,45(1):103-112.
8
LIU R G, LI X, HUANG J H, et al. Synthesis and characterization of g-C3N4/Ag3PO4/TiO2/PVDF membrane with remarkable self-cleaning properties for rhodamine B removal[J]. International Journal of Environmental Research and Public Health, 2022, 19(23): 15551.
9
TIAN Z H, SONG Y T, ZHANG J, et al. In situ growth of TiO2 and its immobilization on PVDF films for the adsorption and photocatalytic degradation of dye[J]. International Journal of Hydrogen Energy, 2024, 51: 837-847.
10
LEE G J, WU J J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review[J]. Powder Technology, 2017, 318: 8-22.
11
YE Z Y, KONG L Y, CHEN F, et al. A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes[J]. Optik, 2018, 164: 345-354.
12
SUN W, LIU J X, CHU H Q, et al. Pretreatment and membrane hydrophilic modification to reduce membrane fouling[J]. Membranes, 2013, 3(3): 226-241.
13
LU T T, XU X X, LIU X X, et al. Super hydrophilic PVDF based composite membrane for efficient separation of tetracycline[J]. Chemical Engineering Journal, 2017, 308: 151-159.
14
DU J Y, LI N, TIAN Y, et al. Preparation of PVDF membrane blended with graphene oxide-zinc sulfide (GO-ZnS) nanocomposite for improving the anti-fouling property[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400: 112694.
15
DU J Y, TIAN Y, LI N, et al. Enhanced antifouling performance of ZnS/GO/PVDF hybrid membrane by improving hydrophilicity and photocatalysis[J]. Polymers for Advanced Technologies, 2019, 30(2): 351-359.
16
赵世怀,张翠翠,杨紫博,等.PVDF/PVA复合膜的制备与性能研究[J].化工新型材料,2018,46(5):60-63.
17
郑如兰,邓海金,李明.纳米ZnS/PVDF复合膜的制备及其光学性能[J].复合材料学报,2007,24(6):26-30.
18
GUO J, KHAN S, CHO S H, et al. Preparation and immobilization of zinc sulfide (ZnS) nanoparticles on polyvinylidene fluoride pellets for photocatalytic degradation of methylene blue in wastewater[J]. Applied Surface Science, 2019, 473: 425-432.
19
LI M, SUN J X, CHEN G, et al. Construction double electric field of sulphur vacancies as medium ZnS/Bi2S3-PVDF self-supported recoverable piezoelectric film photocatalyst for enhanced photocatalytic performance[J]. Applied Catalysis B: Environmental, 2022, 301: 120792.
20
CHEN C F, ZHU J, ZHANG Y M, et al. Preparation and luminescence properties of PVDF/ZnS: Mn flexible thin-film sensors[J]. Coatings, 2022, 12(4): 449.
21
HE T S, MA H H, ZHOU Z F, et al. Preparation of ZnS-fluoropolymer nanocomposites and its photocatalytic degradation of methylene blue[J]. Polymer Degradation and Stability, 2009, 94(12): 2251-2256.
22
冯雪婷,杨盛,文晨,等.Ag2CO3@PVDF/氧化石墨烯超滤膜及其分离性能[J].化工学报,2017,68(5):2169-2176.
23
DEVI S A, SINGH K J, DEVI K N. Photocatalytic efficiency of PVDF based binary and ternary nanocomposites of metal sulfides: A comparative study[J]. Materials Today: Proceedings, 2023, DOI: 10.1016/j.matpr.2023.06.468.
24
HE M M, FAN W J, MA H H, et al. Preparation of ZnS-AgIn5S8/fluoropolymer fiber composites and its photocatalytic H2 evolution from splitting of water under similar sunlight irradiation[J]. Catalysis Communications, 2012, 22: 89-93.
25
庞睿智,李鑫,李健生,等.ZrO2纳米粒子原位杂化 PVDF 膜的制备及其抗污染性能[J].物理化学学报,2013,29(12):2592-2598.
26
伍卫,李畅,张旭,等.亲水改性PVDF膜材料及其膜生物反应器应用[J].化工进展,2019,38(11):4991-4998.
27
SHEN J L, ZHANG Q, YIN Q, et al. Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property[J]. Journal of Membrane Science, 2017, 521: 95-103.
28
SHEN X, ZHAO Y P, FENG X, et al. Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer[J]. Biofouling, 2013, 29(3): 331-343.
29
ZHAO X Z, XUAN H X, QIN A W, et al. Improved antifouling property of PVDF ultrafiltration membrane with plasma treated PVDF powder[J]. RSC Advances, 2015, 5(79): 64526-64533.
30
KUDO A, SEKIZAWA M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst[J]. Chemical Communications, 2000 (15): 1371-1372.
31
KANAKARAJU D, CHANDRASEKARAN A. Recent advances in TiO2/ZnS-based binary and ternary photocatalysts for the degradation of organic pollutants[J]. Science of the Total Environment, 2023, 868: 161525.
32
LABIADH H, CHAABANE T B, BALAN L, et al. Preparation of Cu-doped ZnS QDs/TiO2 nanocomposites with high photocatalytic activity[J]. Applied Catalysis B: Environmental, 2014, 144: 29-35.
33
SHARMA K, RAIZADA P, HASIJA V, et al. ZnS-based quantum dots as photocatalysts for water purification[J]. Journal of Water Process Engineering, 2021, 43: 102217.
34
王宇飞.抗黏附性H-PVDF@ZnO/Ag复合膜的构筑及在细菌/油/染料/水复杂污水的一体化分离应用[D].广州:广州大学,2021.

评论

PDF(1007 KB)

Accesses

Citation

Detail

段落导航
相关文章

/