PP/POE复合材料的制备及其阻燃性能与耐久性能研究

江浩, 齐慧芳

PDF(1339 KB)
PDF(1339 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 59-63. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.011
理论与研究

PP/POE复合材料的制备及其阻燃性能与耐久性能研究

作者信息 +

Preparation of PP/POE Composites and Their Flame Retardancy and Durability Properties

Author information +
History +

摘要

以聚烯烃弹性体(POE)为主要增韧剂制备不同POE含量的聚丙烯(PP)复合材料,比较不同POE含量对PP复合材料阻燃性能和耐久性能的影响,进一步探究其作为建筑材料的适用性。结果表明:添加质量分数6% POE的PP复合材料在阻燃性能方面表现最优,表现出最高的极限氧指数值(29.9%),最低的总热释放量(128.3 MJ/m2)以及热释放速率(574.7 kW/m2)。在耐久性能测试中,相比纯聚丙烯材料,添加质量分数6% POE的PP复合材料也能够保持优异的阻燃性能和力学性能,在经过72 h的老化之后,其力学性能和阻燃性能的下降程度最低,因此能够作为建筑材料,具有广泛应用的应用前景。

Abstract

Polyolefin elastomer (POE) was used as the main toughening agent to prepare polypropylene (PP) composites with different POE contents. The effects of different POE contents on the flame retardancy and durability of PP composites were compared, and their applicability as building materials was further explored. The results showed that the PP composite with 6% POE content exhibited the best flame-retardant performance, with the highest limiting oxygen index (29.9%) and the lowest total heat release (128.3 MJ/m²) and heat release rate (574.7 kW/m²). In the durability tests, compared with pure polypropylene material, the PP composite with 6% POE content also maintained excellent flame-retardant and mechanical properties. After 72 h of aging, it showed the lowest degree of decline in mechanical and flame-retardant properties. Therefore, it has the potential to be used as a building material with broad application prospects.

关键词

聚丙烯 / 聚烯烃弹性体 / 阻燃性能 / 耐久性

Key words

Polypropylene / Polyefin elastomer / Flame retardancy / Durability

中图分类号

TB332 / TQ325.14

引用本文

导出引用
江浩 , 齐慧芳. PP/POE复合材料的制备及其阻燃性能与耐久性能研究. 塑料科技. 2025, 53(02): 59-63 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.011
JIANG Hao, QI Huifang. Preparation of PP/POE Composites and Their Flame Retardancy and Durability Properties[J]. Plastics Science and Technology. 2025, 53(02): 59-63 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.011

参考文献

1
孙嘉琦,刘曦,王传林,等.硅烷偶联剂改性聚丙烯纤维水泥基复合材料的性能研究[J].硅酸盐通报,2024,43(7):2355-2362, 2371.
2
胡黄飞,王凯,江舒,等.回收碳纤维/剑麻增强聚丙烯复合材料的力学性能[J].工程塑料应用,2024,52(7):1-7.
3
杨莲,蒋晶,贾彩宜,等.聚酰胺6微纤增强聚丙烯复合材料制备及化学注塑发泡性能研究[J].中国塑料,2024,38(6):12-18.
4
郝兴天,刘瑞,胡礼珍,等.聚丙烯种类对丁基橡胶/聚丙烯热塑性硫化胶性能的影响[J].橡胶工业,2024,71(7):513-517.
5
SHUBHRA Q T H, ALAM A K M M, QUAIYYUM M A. Mechanical properties of polypropylene composites: A review[J]. Journal of Thermoplastic Composite Materials, 2013, 26(3): 362-391.
6
HIMMA N F, ANISAH S, PRASETYA N, et al. Advances in preparation, modification, and application of polypropylene membrane[J]. Journal of Polymer Engineering, 2016, 36(4): 329-362.
7
VARGA J. β-modification of isotactic polypropylene: Preparation, structure, processing, properties, and application[J]. Journal of Macromolecular Science, Part B: 2002, 41(4/6): 1121-1171.
8
KAZAYAWOKO M, BALATINECZ J J, MATUANA L M. Surface modification and adhesion mechanisms in woodfiber-polypropylene composites[J]. Journal of Materials Science, 1999, 34: 6189-6199.
9
THAKUR V K, VENNERBERG D, KESSLER M R. Green aqueous surface modification of polypropylene for novel polymer nanocomposites[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9349-9356.
10
GIAVARINI C, DE FILIPPIS P, SANTARELLI M L, et al. Production of stable polypropylene-modified bitumens[J]. Fuel, 1996, 75(6): 681-686.
11
赵锦博,王炳涛,郭云馨,等.苯基膦酸铈协效阻燃IFR/PP复合材料的制备[J/OL].复合材料学报,1-8[2024-07-30].
12
游一兰,贺国文,孟洪量,等.回收聚丙烯纳米复合材料的性能[J].塑料工业,2024,52(3):138-143.
13
杨晓龙,刘晨曦,李云东,等.磷酸硼协效膨胀型阻燃剂对聚丙烯阻燃性能的研究[J].塑料科技,2022,50(8):72-76.
14
AL-HADIDY A I, TAN Y Q. Mechanistic approach for polypropylene-modified flexible pavements[J]. Materials & Design, 2009, 30(4): 1133-1140.
15
KANG M S, CHUN B, KIM S S. Surface modification of polypropylene membrane by low‐temperature plasma treatment[J]. Journal of Applied Polymer Science, 2001, 81(6): 1555-1566.
16
ZHANG J, DE JUAN S, ESTEBAN-CUBILLO A, et al. Effect of organo-modified nanosepiolite on fire behaviors and mechanical performance of polypropylene composites[J]. Chinese Journal of Chemistry, 2015, 33(2): 285-291.
17
DAS O, KIM N K, KALAMKAROV A L, et al. Biochar to the rescue: Balancing the fire performance and mechanical properties of polypropylene composites[J]. Polymer Degradation and Stability, 2017, 144: 485-496.
18
ARJMANDI R, ISMAIL A, HASSAN A, et al. Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites[J]. Construction and Building Materials, 2017, 152: 484-493.
19
SCHIRP A, BARRIO A. Fire retardancy of polypropylene composites reinforced with rice husks: From oxygen index measurements and cone calorimetry to large-scale single-burning-item tests[J]. Journal of Applied Polymer Science, 2018, 135(37): 46654.
20
NIE S B, ZHANG C, PENG C, et al. Study of the synergistic effect of nanoporous nickel phosphates on novel intumescent flame retardant polypropylene composites[J]. Journal of Spectroscopy, 2015, 2015(1): 289298.
21
ZHAO W J, HU Q X, ZHANG N N, et al. In situ inorganic flame retardant modified hemp and its polypropylene composites[J]. RSC Advances, 2017, 7(51): 32236-32245.
22
TANG W F, ZHANG S, SUN J, et al. Effects of surface acid-activated kaolinite on the fire performance of polypropylene composite[J]. Thermochimica Acta, 2017, 648: 1-12.
23
CHEN W Y, YUAN S S, SHENG Y, et al. Effect of charring agent THEIC on flame retardant properties of polypropylene[J]. Journal of Applied Polymer Science, 2015, DOI:10.1002/app.41214.
24
UNTERWEGER C, DUCHOSLAV J, STIFTER D, et al. Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites[J]. Composites Science and Technology, 2015, 108: 41-47.
25
ZAHARI W Z W, BADRI R, ARDYANANTA H, et al. Mechanical properties and water absorption behavior of polypropylene/ijuk fiber composite by using silane treatment[J]. Procedia Manufacturing, 2015, 2: 573-578.
26
ZULKIFLI N I, SAMAT N, ANUAR H, et al. Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites[J]. Materials & Design, 2015, 69: 114-123.
27
SPOERK M, SAVANDAIAH C, ARBEITER F, et al. Optimization of mechanical properties of glass‐spheres‐filled polypropylene composites for extrusion‐based additive manufacturing[J]. Polymer Composites, 2019, 40(2): 638-651.
28
THENEPALLI T, JUN A Y, HAN C, et al. A strategy of precipitated calcium carbonate (CaCO 3) fillers for enhancing the mechanical properties of polypropylene polymers[J]. Korean Journal of Chemical Engineering, 2015, 32: 1009-1022.
29
KHALAJ M J, AHMADI H, LESANKHOSH R, et al. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles[J]. Trends in Food Science & Technology, 2016, 51: 41-48.

评论

PDF(1339 KB)

Accesses

Citation

Detail

段落导航
相关文章

/