PDA/EA光固化树脂的光热效应及光响应形状记忆行为研究

陈现景, 于浩, 刘博, 穆雅楠, 于虎娜

PDF(2255 KB)
PDF(2255 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 47-52. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.009
理论与研究

PDA/EA光固化树脂的光热效应及光响应形状记忆行为研究

作者信息 +

Study on Photothermal Effect and Light-responsive Shape Memory Behavior of PDA/EA Photopolymer Resin

Author information +
History +

摘要

通过引入聚多巴胺(PDA)增强交联作用和界面相互作用,制备一系列不同配比的聚多巴胺/环氧丙烯酸酯(PDA/EA)固化物,利用动态热机械(DMA)和热失重(TGA)等方法进行分析。结果表明:PDA的掺入有效提高了材料的储能模量、交联密度、损耗模量峰值温度及热稳定性。同时,PDA/EA材料在近红外(NIR)光源下表现出良好的光热效应,具有较好的光吸收性、光稳定性和光控制性。特别是在光强度为1 W/cm2的808 nm NIR光照射下,PDA-EA-0.1的固化材料在60 s内即可完成光响应形状回复。PDA/EA固化物具有优异的光热转化效率和形状记忆性能,在光热治疗和微纳米结构控制等领域的应用前景广阔。

Abstract

By introducing polydopamine (PDA) to enhance cross-linking and interfacial interactions, a series of polydopamine/epoxy acrylate (PDA/EA) cured products with various ratios were prepared and analyzed using methods such as dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The results show that the incorporation of PDA effectively increased the storage modulus, cross-linking density, peak temperature of loss modulus, and thermal stability of the materials. Additionally, PDA/EA materials exhibited good photothermal effects under NIR light, with desirable light absorption, photostability, and light controllability. Especially under 808 nm NIR light with an intensity of 1 W/cm², the cured material of PDA-EA-0.1 could complete photo-responsive shape recovery within 60 s. PDA/EA cured products have excellent photothermal conversion efficiency and shape memory properties, and they hold broad prospects for application in fields such as photothermal therapy and micro/nanostructure control.

关键词

聚多巴胺 / 环氧丙烯酸酯 / 光热效应 / 光响应 / 形状记忆

Key words

PDA / EA / Photothermal effect / Light-responsive / Shape memory

中图分类号

TB332

引用本文

导出引用
陈现景 , 于浩 , 刘博 , . PDA/EA光固化树脂的光热效应及光响应形状记忆行为研究. 塑料科技. 2025, 53(02): 47-52 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.009
CHEN Xianjing, YU Hao, LIU bo, et al. Study on Photothermal Effect and Light-responsive Shape Memory Behavior of PDA/EA Photopolymer Resin[J]. Plastics Science and Technology. 2025, 53(02): 47-52 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.009

参考文献

1
TODAKA T, YAMAMICHI D, ENOKIZONO M. Numerical modeling of magnetic properties of ferromagnetic shape memory materials depending on temperature and stress[J]. IEEE Transactions on Magnetics, 2011, 47(5): 926-929.
2
VÉCHAMBRE C, BULÉON A, CHAUNIER L, et al. Macromolecular orientation in glassy starch materials that exhibit shape memory behavior[J]. Macromolecules, 2010, 43(23): 9854-9858.
3
ASLANDIS D, ROEBBEN G. Shape memory materials & its applications[J]. Materials Science Forum, 2001, 169: 394-403.
4
PELLEGRINI N. A thermo-dynamical constitutive model based on kinetic approach for shape memory materials[J]. Advanced Materials Research, 2013, 651: 42-48.
5
PORTA M, CASTÁN T, SAXENA A, et al. Caloric effects induced by uniform and non-uniform stress in shape-memory materials[J]. Shape Memory and Superelasticity, 2023, 9: 345-352.
6
BHATTACHARYYA A, OZTURK M M, GOULBOURNE N C, et al. Thermal response of an isolated rectangular, layered nickel-titanium shape memory alloy thin film with variable material properties[J]. Lecture Notes in Engineering & Computer Science, 2013, 2203: 798-801.
7
DAI J, WANG Z, WU Z, et al. Shape memory polymer constructed by π-π stacking with ultrafast photoresponse and self-healing performance[J]. ACS Applied Polymer Materials, 2023, 5(4): 2575-2582.
8
CANBAY C A, TATAROGLU A, DERE A, et al. A new shape memory alloy film/p-Si solar light four quadrant detector for solar tracking applications[J]. Journal of Alloys and Compounds, 2016, 688(PartA): 762-768.
9
KOHLMEYER R R, BUSKOHL P R, DENEAULT J R, et al. Shape‐Memory Materials: Shape-Reprogrammable Polymers: Encoding, erasing, and re-encoding (Adv. Mater. 48/2014)[J]. Advanced Materials, 2014, 26(48): 8231-8231.
10
JIN D Y, PARK D U, WON J S, et al. Effects of polydopamine treatment on the interfacial adhesion between EPDM rubber compound and polyketone fiber[J]. 2015, DOI: 10.12772/TSE.2015.52.408.
11
JIA X, MA Z Y, ZHANG G X, et al. Polydopamine film coated controlled-release multielement compound fertilizer based on mussel-inspired chemistry[J]. American Chemical Society, 2013, DOI: 10.1021/jf3053059.
12
刘浩,谭家玲,于伟东,等.多巴胺改性聚二乙炔复合热致变色材料的制备及性能[J].高分子学报,2024,55(4):428-437.
13
LI J W, GAO N J, ZHANG W Y, et al. A sandwich-like structure hybrid coating of cold galvanizing coating/polydopamine on hot-dip galvanized steel with enhanced adhesion and corrosion resistance[J]. Science China Technological Sciences, 2023, 66(8): 2381-2395.
14
SU B Q, ZHANG Y Z, DU Y L, et al. Fabrication of a silver nanoparticle/polydopamine modified glassy carbon electrode and its electrocatalytic reduction for p-nitrophenol[J]. Chemical Journal of Chinese Universities, 2010, DOI: 10.1109/ACP.2010.5682664.
15
ZHANG D W, LIU Y J, LENG J S. Magnetic field activation of thermoresponsive shape-memory polymer with embedded micron sized Ni powder[J]. Advanced Materials Research, 2010, 123-125: 995-998.
16
MENG T, JIANG R, WANG S, et al. Stem cell membrane-coated Au-Ag-PDA nanoparticle-guided photothermal acne therapy [J]. Colloids and Surfaces B: Biointerfaces, 2020, DOI: 10.1016/j.colsurfb.2020.111145.
17
YADAV V, HARKIN A V, ROBERTSON M L, et al. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes[J]. Soft Matter, 2016, 12: 3589-3599.
18
刘旭,徐娜,蒲曦鸣,等.ICG/PDA纳米粒的合成及其光热-光动力协同抑癌效应[J].材料科学,2021,11(8):918-928.
19
LI Y, GOSWAMI M, ZHANG Y, et al.Combined light- and heat-induced shape memory behavior of anthracene-based epoxy elastomers[J]. Scientific Reports, 2020, DOI: 10.1038/s41598-020-77246-0.
20
ZHU S, WANG W, ISLAM Z, et al. Polydopamine modified ammonium polyphosphate modified shape memory water‐borne epoxy composites with photo‐responsive flame retardant property[J]. Journal of Applied Polymer Science, 2021, DOI: 10.1002/app.49696.
21
吴杨龙,董余兵,傅雅琴.光驱动型聚多巴胺/水性环氧形状记忆复合材料[J].浙江理工大学学报:自然科学版,2020,43(2):173-181.
22
张闯,张静,王娜,等.聚多巴胺改性纳米二氧化硅增强反式-1,4-聚异戊二烯形状记忆聚合物的制备与性能[J].复合材料学报,2023,40(5):2772-2782.
23
靳兆远,徐钊,刘磊,等.交联乙烯-醋酸乙烯酯共聚物/聚多巴胺复合材料的制备及光驱动形状记忆效应[J].高分子材料科学与工程,2023,39(4):115-121.
24
LU H H, WU Y L, QI X M, et al. Thermally and light‐triggered reconfigurable shape memory polydopamine/epoxy composite with self‐healing and recyclable ability[J]. Journal of Applied Polymer Science, 2021, DOI:10.1002/app.50526.
25
KOYANAGI M, TAKATA M, KURINO H, et al. Metal nano-dot memory for high-density non-volatile memory application[C]//Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004, DOI:10.1109/ICSICT.2004.1436648.
26
LV W, WANG C, LIN X C, et al. Dithienylmaleimide-based D-A conjugated polymer film: Photo-responsive behavior and application in electrical memory and logic gates[J]. Chinese Journal of Polymer Science, 2021, 39(9): 1177-1184.
27
EBRAHIMNEJAD P, DINARVAND R, SAJADI S A, et al. Preparation and characterization of poly lactide-co-glycolide nanoparticles of SN-38[J]. PDA Journal of Pharmaceutical Science & Technology, 2009, 63(6): 512-520.
28
TRELOARL R G,王迪珍.橡胶弹性理论[J].橡胶译丛,1981(5):5-8.
29
危银涛,杨挺青.黏弹性橡胶动态力学性能与能耗[C]//中国力学学会学术大会'2005论文摘要集.北京:中国力学学会,北京工业大学,2005.
30
NEUBURGER N A, EICHINGER B E. Critical experimental test of the Flory-Rehner theory of swelling[J]. Macromolecules, 1988, 21(10): 3060-3070.

评论

PDF(2255 KB)

Accesses

Citation

Detail

段落导航
相关文章

/