碳纤维增强碳纳米管/环氧多尺度复合材料的制备与性能研究

杨雨轩, 卢少微, 李伟

PDF(3550 KB)
PDF(3550 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 32-37. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.006
理论与研究

碳纤维增强碳纳米管/环氧多尺度复合材料的制备与性能研究

作者信息 +

Preparation and Performance Study of Carbon Fiber Reinforced Carbon Nanotubes/Epoxy Multiscale Composites

Author information +
History +

摘要

将单壁碳纳米管(SWCNTs)进行非共价修饰后,与环氧树脂(EP)相结合,制备SWCNTs/EP复合材料。将纳米改性后的环氧树脂与碳纤维(CF)复合,制备CF/SWCNTs/EP多尺度复合材料,并对复合材料的结构和性能进行研究。结果表明:对SWCNTs进行非共价修饰处理改善了SWCNTs在EP体系中的分散性。当SWCNTs质量分数为0.005%时,复合材料的弯曲强度和弯曲模量分别提高29.2%和46.1%,冲击强度提高47.9%,拉伸强度提升58.9%。利用扫描电子显微镜(SEM)分析SWCNTs在基体中的桥接增强机制。SWCNTs的加入提升了EP的热性能。通过溶液浸渍法制备CF/SWCNTs/EP多尺度复合材料,当SWCNTs添加质量分数为0.005%时,复合材料层合板的弯曲强度和模量分别提升22.5%和32.8%,层间剪切强度提升15.2%,基体与纤维之间的界面强度得到一定的提升。采用湿法缠绕工艺制备碳纤维压力容器,经过纳米改性后,CF/SWCNTs/EP压力容器的爆破压力比CF/EP压力容器的爆破压力高15.5%左右。

Abstract

The single-walled carbon nanotubes (SWCNTs) were non-covalently modified and combined with epoxy resin (EP) to prepare SWCNTs/EP composites. The nanomodified epoxy resin was then compounded with carbon fiber (CF) to fabricate CF/SWCNTs/EP multiscale composites, with subsequent investigation of their structure and properties. Results demonstrate that non-covalent modification improved the dispersion of SWCNTs in the EP matrix. When the mass fraction of SWCNTs reached 0.005%, the composite exhibited significant enhancements. The flexural strength and modulus increased by 29.2% and 46.1% respectively, the impact strength improved by 47.9%, and the tensile strength rose by 58.9%. Scanning Electron Microscopy (SEM) analysis revealed the bridging reinforcement mechanism of SWCNTs within the matrix. The thermal properties of EP were also enhanced through SWCNTs incorporation. Using the solution impregnation method, CF/SWCNTs/EP multiscale composite laminates showed 22.5% and 32.8% improvements in flexural strength and modulus respectively at 0.005% SWCNTs loading, along with 15.2% enhancement in interlaminar shear strength and improved interfacial bonding between matrix and fibers. Carbon fiber pressure vessels fabricated via wet winding process demonstrated that the CF/SWCNTs/EP modified vessels achieved approximately 15.5% higher burst pressure compared to conventional CF/EP vessels.

关键词

单壁碳纳米管 / 环氧树脂 / 力学性能 / 多尺度复合材料

Key words

SWCNTs / Epoxy resin / Mechanical properties / Multiscale composites

中图分类号

TB332

引用本文

导出引用
杨雨轩 , 卢少微 , 李伟. 碳纤维增强碳纳米管/环氧多尺度复合材料的制备与性能研究. 塑料科技. 2025, 53(02): 32-37 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.006
YANG Yuxuan, LU Shaowei, LI Wei. Preparation and Performance Study of Carbon Fiber Reinforced Carbon Nanotubes/Epoxy Multiscale Composites[J]. Plastics Science and Technology. 2025, 53(02): 32-37 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.006

参考文献

1
YANG Z T, MCELRATH K, BAHR J, et al. Effect of matrix glass transition on reinforcement efficiency of epoxy-matrix composites with single walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and graphite[J]. Composites Part B: Engineering, 2012, 43(4): 2079-2086.
2
沈真.碳纤维复合材料在飞机结构中的应用[J].高科技纤维与应用,2010,35(4):1-4, 24.
3
李博彦.碳纤维增强聚合物在桥梁工程中的应用[J].重庆建筑,2024,23(3):63-65.
4
胡安东,陈燕,傅玉灿,等.超声振动辅助铣磨加工对CFRP切削力和表面质量的影响[J].复合材料学报,2016,33(4):788-796.
5
杨旭静,张良胜,李茂君,等.超声振动对快速固化环氧树脂体系固化动力学特性的影响[J].复合材料学报,2022,39(5):2470-2481.
6
WANG X Y, YANG Z D, WANG B Y, et al. Effect of epoxy resin addition on properties and corrosion behavior of sintered joints in power modules serviced offshore[J]. Journal of Materials Research and Technology, 2023, 25: 6593-6612.
7
HAMID N H, JAWAID M, WAN B H W S I, et al. Effect of tetraethoxysilane on the dimensional stability and static bending properties of nanocellulose, tannin, and activated carbon mixed with epoxy resin[J]. Journal of Materials Research and Technology, 2021, 15: 416-426.
8
MAGHSOUDLOU M A, BARBAZ ISFAHANI R, SABER-SAMANDARI S, et al. Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations[J]. Composites Part B: Engineering, 2019, 175:107119.
9
邱廷田,郭家铭,刘浏,等.碳纤维表面多尺度界面构建及其复合材料力学性能研究[J].化工新型材料,2022,50(6):122-125, 130.
10
柳欣,王保山,望红玉.碳纳米管/碳纤维多尺度增强体复合材料的研究进展[J].化工新型材料,2021,49(1):9-13.
11
LI P Y, XIA Y Y, ZHANG C, et al. Mechanical and piezoresistive properties of multi-walled carbon nanotubes reinforced epoxy matrix composites for pipeline monitoring[J]. Journal of Materials Research and Technology, 2024, 28: 2127-2137.
12
VERTUCCIO L, GUADAGNO L, SPINELLI G, et al. Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures[J]. Composites Part B: Engineering, 2016, 107:192-202.
13
LENG Y, XU M J, SUN Y, et al. Simultaneous enhancement of thermal conductivity and flame retardancy for epoxy resin thermosets through self-assemble of ammonium polyphosphate surface with graphitic carbon nitride[J]. Polymers Advanced Technologies, 2019, 30(9): 2468-2479.
14
王文雨,张帅国,冯宇,米杰.碳纳米管制备技术的研究进展[J].天然气化工:C1化学与化工,2020,45(4):123-129.
15
张东飞,姚亚刚,祝泽周,等.碳纳米管制备及其复合材料导热性能研究进展[J].集成技术,2019,8(1):78-87.
16
马志敏,刘吉平,张艾飞,等.碳纳米管制备工艺对其产量和形貌的影响[J].化工新型材料,2009,37(10):113-114.
17
苏革,杜金红,范月英,等.用不同催化剂制备纳米碳纤维的生长机理[J].材料研究学报,2001,15(6):623-628.
18
项顼,曹传宝.单壁碳纳米管制备研究新进展[J].材料导报,2003(4):43-45.
19
蒋美丽.碳纳米管的制备[J].塑料科技,2004,32(4):5-9.
20
LIAO Y H, MARIETTA-TONDIN O, LIANG Z Y, et al. Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites[J]. Materials Science and Engineering: A, 2004, 385(1-2): 175-181.
21
CHEN F, XIAO H, PENG Z Q, et al. Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability[J]. Advanced Composites Hybrid Materials, 2021, 4(4): 1048-1058.
22
CHEN J J, HAN J C, XU D G. Thermal and electrical properties of the epoxy nanocomposites reinforced with purified carbon nanotubes[J]. Materials Letter, 2019, 246: 20-23.
23
DEHROOYEH S, VASEGHI M, SOHRABIAN M, et al. Glass fiber/carbon nanotube/epoxy hybrid composites: Achieving superior mechanical properties[J]. Mechanics of Materials, 2021, 161: 104025.
24
OPELT C V, BECKER D, LEPIENSKI C M, et al. Reinforcement and toughening mechanisms in polymer nanocomposites—Carbon nanotubes and aluminum oxide[J]. Composites Part B: Engineering, 2015, 75: 119-126.
25
ANDREWS R, WEISENBERGER M C. Carbon nanotube polymer composites[J]. Current Opinion Solid State and Materials Science, 2004, 8(1): 31-37.
26
SANES J, SAURÍN N, CARRIÓN F J, et al. Synergy between single-walled carbon nanotubes and ionic liquid in epoxy resin nanocomposites[J]. Composites Part B: Engineering, 2016, 105: 149-159.
27
DARICIK F, TOPCU A, AYDIN K, et al. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application[J]. International Journal of Hydrogen Energy, 2023, 48(3): 1090-1106.
28
ZHAO Z B, TENG K Y, LI N, et al. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface[J]. Composite Structure, 2017, 159: 761-772.
29
LEH D, SAFFRE P, FRANCESCATO P, et al. A progressive failure analysis of a 700-bar type Ⅳ hydrogen composite pressure vessel[J]. International Journal of Hydrogen Energy, 2015, 40: 13206-13214.
30
LEH D, MAGNEVILLE B, SAFFRE P, et al. Optimisation of 700 bar type Ⅳ hydrogen pressure vessel considering composite damage and dome multi-sequencing[J]. International Journal of Hydrogen Energy, 2015, 40(38) : 13215-13230.

评论

PDF(3550 KB)

Accesses

Citation

Detail

段落导航
相关文章

/