长效抗静电聚乙烯薄膜的制备及性能表征

倪超洲, 丁永红, 张宇轩, 郝冬冬

PDF(2057 KB)
PDF(2057 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (02) : 20-25. DOI: 10.15925/j.cnki.issn1005-3360.2025.02.004
理论与研究

长效抗静电聚乙烯薄膜的制备及性能表征

作者信息 +

Reparation and Performance Representation of Long-acting Antistatic Polyethylene Film

Author information +
History +

摘要

采用与聚乙烯(PE)相容性好的聚乙烯蜡(PEW)和具备抗静电能力的丙烯酸钠(AAS)通过溶液接枝方法制备抗静电效果显著、效果持久的抗静电剂(PEW-g-AAS)。将抗静电剂与线性低密度聚乙烯/低密度聚乙烯(LLDPE/LDPE)共混后流延制备抗静电聚乙烯(PE)薄膜,研究PEW-g-AAS对PE薄膜性能的影响。结果表明:随着PEW-g-AAS质量分数的增加,PE薄膜的水接触角降低,表面能增加,力学性能稍有下降;当PEW-g-AAS质量分数为20%时,PE薄膜表面电阻下降至5.20×109 Ω,PE薄膜在1~30 d内表面电阻稳定。

Abstract

Polyethylene wax (PEW) compatible with polyethylene (PE), and sodium acrylate (AAS) with antistatic ability were used to prepare an antistatic agent (PEW-g-AAS) with significant antistatic effect and long-lasting effect by solution grafting method. Antistatic polyethylene films were prepared by casting by blending antistatic agents with linear low-density polyethylene/low-density polyethylene (LLDPE/LDPE), and the effects of PEW-g-AAS on the properties of PE films were studied. The results show that with the increase of PEW-g-AAS mass fraction, the water contact angle of the PE film decreases, the surface energy increases, and the mechanical properties decrease slightly. When the PEW-g-AAS mass fraction is 20%, the surface resistance of the PE film decreases to 5.20×109 Ω, and the surface resistance of the PE film is stable within 1~30 days.

关键词

聚乙烯蜡 / 长效抗静电剂 / 聚乙烯薄膜 / 表面电阻

Key words

Polyethylene wax / Long-acting antistatic agents / Polyethylene film / Surface resistance

中图分类号

TQ325.12 / TQ327.9

引用本文

导出引用
倪超洲 , 丁永红 , 张宇轩 , . 长效抗静电聚乙烯薄膜的制备及性能表征. 塑料科技. 2025, 53(02): 20-25 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.004
NI Chaozhou, DING Yonghong, ZHANG Yuxuan, et al. Reparation and Performance Representation of Long-acting Antistatic Polyethylene Film[J]. Plastics Science and Technology. 2025, 53(02): 20-25 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.02.004

参考文献

1
宋美丽,谷宇,田广华,等.聚乙烯薄膜的性能及应用综述[J].合成材料老化与应用,2018,47(3):115-118, 124.
2
GAROFALO E, MAIO L, SCARFATO P, et al. Study on improving the processability and properties of mixed polyolefin post-consumer plastics for piping applications[J].Polymers, 2021, DOI: 10.3390/polym13010071.
3
DZIADOWIEC D, MATYKIEWICZ D, SZOSTAL M, et al. Overview of the cast polyolefin film extrusion technology for multi-layer packaging applications[J]. Materials, 2023, DOI: 10.3390/ma16031071.
4
付建英,吴书丞,张忠东,等.高透明高开口聚乙烯薄膜专用高效复合添加剂配方设计及应用研究[J].塑料助剂,2023(6):18-21, 28.
5
MARIA C M, LUIGI B, FRANCESCO P L M, et al. Film blowing of biodegradable polymer nanocomposites for agricultural applications[J]. Macromolecular Materials and Engineering, 2021, DOI: 10.1002/mame.202100177.
6
LIU Y D, LU S Y, LUO J, et al. Research progress of antistatic-reinforced polymer materials: A review[J]. Polymers for Advanced Technologies,2023, 34(4): 1393-1404.
7
DE SOUZA V L, DOS ANJOS E G R, VERGINIO G E A, et al. Carbon-based materials as antistatic agents for the production of antistatic packaging: A review[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(4): 3929-3947.
8
ZHU A, WANG H, SUN S, et al. The synthesis and antistatic, anticorrosive properties of polyaniline composite coating[J]. Progress in Organic Coatings, 2018, 122: 270-279.
9
韩卓洒,郭佳美,张胜文,等.塑料包装用抗静电涂层研究进展[J].塑料包装,2022,32(4):10-15, 54.
10
吴连锋,刘艳明,王贤明,等.抗静电涂料研究概述[J].涂料工业,2016,46(8):75-81.
11
WANG K, SHEN L, SONG C Y, et al. The electrical performance and conductive network of reduced graphene oxide-coated ultra-high-molecular-weight polyethylene fibers through electrostatic interaction and covalent bonding[J]. Journal of Applied Polymer Science, 2020, DOI:10.1002/app.48946.
12
NGWABEBJOH F A, ZANDRAA O, SÁHA T, et al. Coating of leather with dye-containing antibacterial and conducting polypyrrole[J]. Coatings. 2023, DOI: 10.3390/coatings13030608.
13
KOBETS A, VOROBYOVA T, GALUZA M, et al. Conductive polyacrylate coatings filled with bimetal Cu-Ni, Zn-Cu, or Zn-Ni powders and graphene nanoplatelets[J]. Polymer Composites, 2023, 45(1): 617-630.
14
向萍,刘圣权,唐晓峰,等.咪唑类离子液体用作聚酯型热塑性聚氨酯的抗静电剂研究[J].塑料助剂,2023(2):1-6, 16.
15
郑骏驰,吴超,刘继丹,等.接枝修饰SiO2及其在PP中协效阻燃与抗静电作用[J],工程塑料应用,2023,51(9):144-151.
16
龚舜,桂源,邓建平,等.聚酰胺弹性体基永久性抗静电剂改性EVAC复合材料制备及性能[J].工程塑料应用,2021,49(7):34-39.
17
苗苗,王晓旭,王迎,等.氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J].纺织学报,2019,40(11):125-130.
18
SILVA L N, DOSANJOS E G R, MORGADO G F D M, et al. Development of antistatic packaging of polyamide 6/linear low-density polyethylene blends-based carbon black composites[J]. Polymer Bulletin, 2019, 77: 3389-3409.
19
GAO W, DANG Z C, LIU F S, et al. Preparation of antistatic epoxy resin coatings based on double comb-like quaternary ammonium salt polymers[J]. RSC Advances, 2020, 10(71): 43523-43532.
20
KOSIŃSKI S, RYKOWSKA I, GONSIOR M, et al. Ionic liquids as antistatic additives for polymer composites—A review[J]. Polymer Testing, 2022, DOI: 10.1016/j.polymertesting.2022.107649.
21
游一兰,李笃信,司高杰,等.PA6基耐磨材料的抗静电改性[J].塑料工业,2022,50(12):40-45, 51.
22
张锴,冯杨,蔡青.抗静电聚乙烯复合材料的制备与性能[J].塑料工业,2020,48(7):15-18, 50.
23
李航,于美燕,张新宇,等.三种不同导电填料对聚氨酯导电涂层应用性能的影响[J].表面技术,2019,48(10):148-156.
24
SU Y F, YIN H, WANG X L, et al. Preparation and properties of ethylene-acrylate salt ionomer/polypropylene antistatic alloy[J]. Advanced Composites and Hybrid Materials, 2021, 4: 104-113.
25
CHEN Y W, XU J. Polymers for advanced technologies. Permanently antistatic and high transparent PMMA terpolymer: Compatilizer, antistatic agent, and the antistatic mechanism[J]. Polymer for Advanced Technologies, 2018, 29(6): 1788-1794.
26
李善良.聚醚酰胺对SEBS/PP热塑性弹性体抗静电性能的影响[J].橡胶科技,2022,20(12):603-605.
27
倪清兰,李进,董玉娇,等.高分子永久型抗静电剂研究进展[J].辽宁化工,2020,49(11):1418-1420, 1423.
28
万帮伟,杨洋.导电炭黑/硅橡胶复合材料的电阻-应变响应特性[J].材料导报,2023,37():539-542.
增刊2
29
田紫阳,聂京凯,樊超,等.铝基复合粉填充型导电橡胶的改性研究[J].智能电网,2016,4(7):709-711.
30
ZAABA N F, ISMAIL H, SAEED A M. A Review: Metal filled thermoset composites [J]. Polymer-Plastics Technology and Materials, 2022, 61(1): 13-26.

基金

江苏高校“青蓝工程”资助(SCZ2363220001)

评论

PDF(2057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/