有机纳滤膜技术研究进展

冒朝静, 张欣

PDF(608 KB)
PDF(608 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (04) : 143-147. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.028
综述

有机纳滤膜技术研究进展

作者信息 +

Review of Organic Nanofiltration Membrane Technology

Author information +
History +

摘要

纳滤作为一种介于反渗透和超滤间的压力驱动膜工艺,具有操作压力低、选择性强、分离效率高、节能环保等优势。有机纳滤膜作为一种化学稳定性高、力学性能及热稳定性良好的高性能膜,能有效解决膜孔径和膜污染难控制等问题,在水处理、食品加工、药品制造和化工产品的分离中展现出较好的应用前景。文章分析了有机纳滤膜截留分离的作用机制,包括空间位阻效应、道南效应和介电排斥效应,探讨了有机纳滤膜的制备和改性方法,综述其在生物技术、制药应用、废水处理及有机溶剂纳滤(OSN)膜领域的最新应用进展,并对其今后的发展走向和所面临的挑战进行展望,旨在为纳滤膜处理技术的发展提供一定的参考。

Abstract

Nanofiltration, as a pressure-driven membrane process situated between reverse osmosis and ultrafiltration, has advantages such as low operating pressure, strong selectivity, high separation efficiency, energy conservation, and environmental protection. Organic nanofiltration membrane, as a high-performance membrane with high chemical stability, good mechanical and thermal stability, can effectively solve the problems of membrane pore size and difficult control of membrane fouling. It has shown good application prospects in water treatment, food processing, pharmaceutical manufacturing, and separation of chemical products. The article analyzes the retention and separation mechanisms of organic nanofiltration membrane, including steric hindrance effects, Donnan effects, and dielectric repulsion effects. It discusses the preparation and modification methods of organic nanofiltration membranes, reviews the latest application progress in the fields of biotechnology, pharmaceutical applications, wastewater treatment, and organic solvent nanofiltration (OSN) membranes, and looks forward to its future development trends and challenges, aiming to provide a certain reference for the development of nanofiltration membrane treatment technology.

关键词

有机纳滤膜 / 作用机制 / 废水处理 / 制药

Key words

Organic nanofiltration membrane / Mechanism of action / Wastewater treatment / Pharmacy

中图分类号

TQ028.8

引用本文

导出引用
冒朝静 , 张欣. 有机纳滤膜技术研究进展. 塑料科技. 2024, 52(04): 143-147 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.028
MAO Chao-jing, ZHANG Xin. Review of Organic Nanofiltration Membrane Technology[J]. Plastics Science and Technology. 2024, 52(04): 143-147 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.028

参考文献

1
DOYO A, KUMAR R, BARAKAT M. Recent advances in cellulose, chitosan, and alginate based biopolymeric composites for adsorption of heavy metals from wastewater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 151(10): 1-12.
2
王芳,夏伟,孙奥,等.湖北长湖表层沉积物营养盐和重金属分布特征及污染评价[J].资源环境与工程,2023,37(5):545-553.
3
陈敏,张新新,赵孔银,等.抗污染海藻酸钙水凝胶纳滤膜对水中重金属离子的去除性能[J].高分子材料科学与工程,2016,32(8):99-103.
4
SAMAVATI Z, SAMAVATI A, GOH P, et al. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater[J]. Chemical Engineering Research and Design, 2022, 49(8): 1-14.
5
AHMED R, ABUARAB M, IBRAHIM M, et al. Assessment of environmental and toxicity impacts and potential health hazards of heavy metals pollution of agricultural drainage adjacent to industrial zones in Egypt[J]. Chemosphere, 2023, DOI: 10.1016/j.chemosphere.2023.137872.
6
CADOTTE J, FORESTER R, KIM M, et al. Nanofiltration membranes broaden the use of membrane separation technology[J]. Desalination, 1988, 70(1/3): 77-88.
7
周芸,尹晓芳.纳滤膜水处理技术在净水工艺中的应用[J].智能城市,2023,9(2):106-108.
8
FEI Y H, HU Y H. Recent progress in removal of heavy metals from wastewater: A comprehensive review[J]. Chemosphere, 2023, DOI: 10.1016/j.chemosphere.2023.139077.
9
IRSHAD M, SATTAR S, NAWAZ R, et al. Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review[J]. Ecotoxicology and Environmental Safety, 2023, DOI: 10.1016/j.ecoenv.2023.115231.
10
LU D, YAO Z, JIAO L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022, DOI: 10.1016/j.advmem.2022.100032.
11
FENG X, PENG D, ZHU J, et al. Recent advances of loose nanofiltration membranes for dye/salt separation[J]. Separation and Purification Technology, 2022, DOI: 10.1016/j.seppur.2021.120228.
12
WANG X, TSURU T, NAKAO S, et al. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes[J]. Journal of Membrane Science, 1997, 135(1): 19-32.
13
JIN X, TALBOT J, WANG N. Analysis of steric hindrance effects on adsorption kinetics and equilibria[J]. AIChE Journal, 1994, 40(10): 1685-1696.
14
THONG Z, HAN G, CUI Y, et al. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal[J]. Environmental Science & Technology, 2014, 48(23): 13880-13887.
15
BOLTON G, BOESCH A, BASHA J, et al. Effect of protein and solution properties on the Donnan effect during the ultrafiltration of proteins[J]. Biotechnology Progress, 2011, 27(1): 140-152.
16
FOGH-ANDERSEN N, BJERRUM P, SIGGAARD-ANDERSEN O. Ionic binding, net charge, and Donnan effect of human serum albumin as a function of pH[J]. Clinical Chemistry, 1993, 39(1): 48-52.
17
赵影.强化Donnan排斥效应的季铵功能化荷正电纳滤膜制备[D].杭州:浙江大学,2022.
18
OATLEY D, LLENAS L, ALJOHANI N, et al. Investigation of the dielectric properties of nanofiltration membranes[J]. Desalination, 2013, 315(2): 100-106.
19
TALAEIPOUR M, NOURI J, HASSANI A, et al. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment[J]. Journal of Environmental Health Science & Engineering, 2017, 15(1): 1-18.
20
KIM I, TANAKA H. Photodegradation characteristics of PPCPs in water with UV treatment[J]. Environment International, 2009, 35(5): 793-802.
21
BISWAS P, WU C. Nanoparticles and the environment[J]. Journal of the Air & Waste Management Association, 2005, 55(6): 708-746.
22
ZHANG F, FAN J, WANG S. Interfacial polymerization: From chemistry to functional materials[J]. Angewandte Chemie International Edition, 2020, 59(49): 21840-21856.
23
DENG J, WANG L, LIU L, et al. Developments and new applications of UV-induced surface graft polymerizations[J]. Progress in Polymer Science, 2009, 34(2): 156-193.
24
CHIAO Y, CHEN S, YAP ANG M, et al. High-performance polyacrylic acid-grafted PVDF nanofiltration membrane with good antifouling property for the textile industry[J]. Polymers, 2020, 12(11): 2443-2449.
25
ZHONG P, WIDJOJO N, CHUNG T, et al. Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater[J]. Journal of Membrane Science, 2012, 417(11): 52-60.
26
MOHAMMED S, HEGAB H, OU R, et al. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes[J]. Green Chemical Engineering, 2021, 2(1): 122-131.
27
GRANCE J, GERENSER L. Plasma treatment of polymers[J]. Journal of Dispersion Science and Technology, 2003, 24(3/4): 305-341.
28
HEGEMANN D, BRUNNER H, OEHR C. Plasma treatment of polymers for surface and adhesion improvement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 208(8): 281-286.
29
DEHGHANPOUR S, PARVIZIAN F, VATANPOUR V, et al. Enhancing the flux and salt rejection of thin-film composite nanofiltration membranes prepared on plasma-treated polyethylene using PVA/TS-1 composite[J]. Reactive and Functional Polymers, 2022, DOI: 10.1016/j.reactfunctpolym.2022.105329.
30
INGOLE P, SOHAIL M, ABOU-ELANWAR A, et al. Water vapor separation from flue gas using MOF incorporated thin film nanocomposite hollow fiber membranes[J]. Chemical Engineering Journal, 2018, 334(2): 2450-2458.
31
BAIG M, INGOLE P, CHOI W, et al. Synthesis and characterization of thin film nanocomposite membranes incorporated with surface functionalized silicon nanoparticles for improved water vapor permeation performance[J]. Green Chemical Engineering, 2017, 308 (12): 27-39.
32
INGOLE P, KIM K, PARK C, et al. Preparation, modification and characterization of polymeric hollow fiber membranes for pressure retarded osmosis[J]. RSC Advances, 2014, 4(93): 51430-51439.
33
FU X, WANG J, HE Y, et al. Nanofiltration membrane with asymmetric polyamide dual-layer through interfacial polymerization for enhanced separation performance[J]. Desalination, 2023, DOI: 10.1016/j.desal.2023.116806.
34
SEAH M, KHOO Y, LAU W, et al. New concept of thin-film composite nanofiltration membrane fabrication using a mist-based interfacial polymerization technique[J]. Industrial & Engineering Chemistry Research, 2021, 60(25): 9167-9178.
35
KANG Y, JANG J, KIM S, et al. PIP/TMC interfacial polymerization with electrospray: Novel loose nanofiltration membrane for dye wastewater treatment[J]. ACS applied Materials & Interfaces, 2020, 12(32): 36148-36158.
36
ANDRADE P, FARIA D, OLIVEIRA S, et al. Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles[J]. Water Research, 2015, 81(9): 333-342.
37
BAI X, ZHANG Y, WANG H, et al. Study on the modification of positively charged composite nanofiltration membrane by TiO2 nanoparticles[J]. Desalination, 2013, 313(3): 57-65.
38
MORADI G, ZINADINI S, RAJABI L, et al. Removal of heavy metal ions using a new high performance nanofiltration membrane modified with curcumin boehmite nanoparticles[J]. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2020.124546.
39
ZHOU H, QIU Z, ZENG J, et al. Ultra-permeable polyamide nanofiltration membrane modified by hydrophilic-hydrophobic alternated lignocellulosic nanofibrils for efficient water reuse[J]. Journal of Membrane Science, 2023, DOI:10.1016/j.memsci.2023.122125.
40
LI J, CHENG L, SONG W, et al. In-situ sol-gel generation of SiO2 nanoparticles inside polyamide membrane for enhanced nanofiltration[J]. Desalination, 2022, DOI: 10.1016/j.desal.2022.115981.
41
SUN F, ZENG H, TAO S, et al. Nanofiltration membrane fabrication by the introduction of polyhedral oligomeric silsesquioxane nanoparticles: Feasibility evaluation and the mechanisms for breaking "trade-off" effect[J]. Desalination, 2022, DOI: 10.1016/j.desal.2021.115515.
42
OATLEY-RADCLIFFE D, WALTERS M, AINSCOUGH T, et al. Nanofiltration membranes and processes: A review of research trends over the past decade[J]. Journal of Water Process Engineering, 2017, 19(6): 164-171.
43
LUO J, GUO S, WU Y, et al. Separation of sucrose and reducing sugar in cane molasses by nanofiltration[J]. Food and Bioprocess Technology, 2018, 11(7): 913-925.
44
ÁVILA P, MELLO D, FORTE A, et al. Fractionation of functional oligosaccharides produced from sugarcane straw using serial nanofiltration membranes and their influence on prebiotic potential[J]. Food Research International, 2023, DOI: 10.1016/j.foodres.2023.113175.
45
ZHAI X, CHEN B, HE Y, et al. A novel loose nanofiltration membrane with superior anti-biofouling performance prepared from zwitterion-grafted chitosan[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, DOI: 10.1016/j.jtice.2021.104191.
46
ZHANG H, LUO J Q, WAN Y H. Regenerable temperature-responsive biocatalytic nanofiltration membrane for organic micropollutants removal[J]. iScience, 2022, 25(1): 1-10.
47
XIAO X, ULRICH B, CHEN B, et al. Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-Impacted groundwater by biochars and activated carbon[J]. Environmental Science & Technology, 2017, 51(11): 6342-6351.
48
STUART M, LAPWORTH D, CRANE E, et al. Review of risk from potential emerging contaminants in UK groundwater[J]. Science of the Total Environment, 2012, 416(2): 1-21.
49
HASHIBA K, NAKAI S, OHNO M, et al. Deterioration mechanism of a tertiary polyamide reverse osmosis membrane by hypochlorite[J]. Environmental Science & Technology, 2019, 53(15): 9109-9117.
50
MA Z B, REN L F, YING D W, et al. Sustainable electrospray polymerization fabrication of thin-film composite polyamide nanofiltration membranes for heavy metal removal[J]. Desalination, 2022, DOI: 10.1016/j.desal.2022.115952.
51
BERA A, TRIVEDI J, KUMAR S, et al. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions[J]. Journal of Hazardous Materials, 2018, 343(2): 86-97.

基金

重庆市教委基金项目(KJQN202103210)

评论

PDF(608 KB)

Accesses

Citation

Detail

段落导航
相关文章

/