杂多酸作为催化剂制备聚甲醛及性能分析

李宁, 王永康, 吴战鹏

PDF(1339 KB)
PDF(1339 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (04) : 109-114. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.022
助剂

杂多酸作为催化剂制备聚甲醛及性能分析

作者信息 +

Preparation and Performance Analysis of POM Using Heteropolyacids as Catalyst

Author information +
History +

摘要

针对催化剂引发聚甲醛(POM)聚合效率和可控性的问题,通过聚合实验,重点研究了催化剂和溶剂种类、催化剂添加量以及聚合温度等条件对反应速率和转化率等的影响。结果表明:不同聚合体系制备得到的聚合物在外观、力学性能、热稳定性和加工稳定性等方面存在差异。三氟化硼体系引发速率低,需较高浓度(20 mg/kg)才可实现催化聚合。与三氟化硼催化体系相比,杂多酸引发效率较高,聚合诱导期和固化时间较短。最优浓度为5 mg/kg时,聚合实验转化率为78.2%,所合成的POM初始分解温度为367 ℃,具有更优异的热稳定性,不稳定末端基含量低,甲醛释放量较少,EGM值为72 mg/kg,VDA275值为15 mg/kg。因此,杂多酸催化聚合POM的效果更佳。

Abstract

In order to solve the problem of polymerization efficiency and controllability of polyoxymethylene (POM) initiated by catalyst, the effects of catalyst and solvent types, catalyst addition amount, polymerization temperature, and other conditions on reaction rate and conversion rate were studied through polymerization experiments. The results show that the polymers prepared by different polymerization systems have differences in appearance, mechanical properties, thermal stability, processing stability and other aspects. The boron trifluoride system has a low initiation rate and requires a high concentration (20 mg/kg) to achieve catalytic polymerization. Compared with the boron trifluoride catalytic system, heteropoly, acid induction efficiency is higher, the polymerization induction period and curing time are relatively short. When the optimal concentration is 5 mg/kg, the conversion rate of the polymerization experiment is 78.2%, and the synthesized POM has better thermal stability and low content of unstable terminal groups. Besides, less formaldehyde is released and the EGM value is 72 mg/kg as well as the VDA275 value is 15 mg/kg. Therefore, heteropoly acid catalytic polymerization of POM is a more effective choice.

关键词

聚甲醛 / 杂多酸 / 催化剂 / 热稳定性

Key words

Polyoxymethylene / Heteropoly acids / Catalyst / Thermal stability

中图分类号

TB332

引用本文

导出引用
李宁 , 王永康 , 吴战鹏. 杂多酸作为催化剂制备聚甲醛及性能分析. 塑料科技. 2024, 52(04): 109-114 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.022
LI Ning, WANG Yong-kang, WU Zhan-peng. Preparation and Performance Analysis of POM Using Heteropolyacids as Catalyst[J]. Plastics Science and Technology. 2024, 52(04): 109-114 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.022

参考文献

1
刘京军.低挥发聚甲醛在汽车上的应用[J].化工新型材料,2015,43(10):247-248.
2
王敏,李西春,廖广明.POM生产技术及改性研究进展[J].工程塑料应用,2022,50(12):155-162.
3
王延峰.影响工业甲醛生产中产品醇含量的因素[J].河南化工,2020,37(3):35-36.
4
杨大志,李建华.共聚甲醛热稳定性能评价及研究[J].塑料工业,2019,47(6):118-121.
5
李艳红,关礼争,李响,等.聚甲醛合成及热稳定改性研究进展[J].工程塑料应用,2021,49(11):149-157.
6
胡朝辉,张广发,李武斌,等.低挥发份聚甲醛的制备及其性能研究[J].现代化工,2019,39(1):154-157.
7
张广发.聚合反应对共聚甲醛不稳定末端基的影响研究[J].化工新型材料,2019,47(8):193-196.
8
李武斌,李颖悟,江依红.共聚甲醛聚合反应影响因素探析[J].塑料工业,2018,46(10):39-42.
9
罗峥.杂多酸催化炔丙基取代反应研究[D].南昌:江西师范大学,2013.
10
山本薰.稳定化聚缩醛共聚物的制造方法:CN200910127470.3[P].2009-009-09.
11
王亚涛,李建华,关礼争,等.杂多酸混合物及其应用:CN202110616865.0[P].2021-09-21.
12
MOHAMMAD AH, SHERVIN A, HASSAN A. Bulk copolymerization of 1,3,5-trioxane and 1,3-dioxolane in presence of phosphotungstic acid catalyst and tetrahydrofuran as retarder: Crystallinity and thermal properties[J]. Designed Monomers and Polymers, 2016, 19(4): 361-368.
13
李响,关礼争,金旺,等.共聚甲醛的聚合工艺研究及产品热稳定性能评价[J].塑料科技,2022,50(11):93-96.
14
SHARAVANAN K, ORTEGA E, MOREAU M, et al. Cationic copolymerization of 1,3,5-trioxane with 1,3-dioxepane: A comprehensive approach to the polyacetal process[J]. Macromolecules, 2009, 42(22): 8702-8710.
15
HAJIHASHEMI M A, AHMADI S, ARABI H, et al. Bulk copolymerization of 1,3,5-trioxane and 1, 3-dioxolane in presence of phosphotungstic acid catalyst and tetrahydrofuran as retarder: Crystallinity and thermal properties[J]. Designed Monomers & Polymers, 2016, DOI: 10.1080/15685551.2016.1152546.
16
陈鹏.三聚甲醛合成工艺路线探究[J].化肥设计,2020,58(3):9-11.
17
马炜婷.在非水体系中合成三聚甲醛的研究[D].北京:中国石油大学(北京),2022.
18
徐翔民,张宏祥,张豫徽,等.聚甲醛/纳米SiO2复合材料的力学性能、结晶行为及热稳定性研究[J].塑料科技,2020,48(1):80-85.
19
黄廷健,牟浩,阳知乾,等.高强高模聚甲醛纤维的制备及其性能[J].纺织学报,2018,39(10):1-6.
20
高晟强.聚甲醛结晶性能调控[D].青岛:青岛科技大学,2021.
21
应宇骥,刘亚林,王科,等.VDA275实验条件的探究[J].环境技术,2020(增刊1):82-85.
22
李娴,邵玉婉,陈文娟,等.VDA275用于汽车内饰纺织品材料中甲醛释放量的检测研究[J].中国纤检,2019(3):77-79.
23
苑起彬,朱林华.杂多酸催化剂应用研究进展[C]//中国环境科学学会2022年科学技术年会论文集(三).北京:中国环境科学学会(Chinese Society for Environmental Sciences),2022.
24
张胜余,杨水金.杂多酸(盐)催化剂催化合成苹果酯研究进展[J].精细石油化工进展,2022,23(2):43-47.
25
王天宇,姚佳斌,蒋尚,等.杂多酸催化剂的催化影响因素及应用[J].化工管理,2021(2):88-89.
26
于海云.负载型杂多酸催化剂的制备、表征及催化性能研究[D].通辽:内蒙古民族大学,2013.
27
马小丰,李建华,董金明,等.高强高韧聚甲醛粉末静电喷涂涂层的制备与性能研究[J].中国塑料,2023,37(7):9-15.
28
陈曦,马小丰,李建华.耐磨增韧改性聚甲醛的制备及性能研究[J].塑料工业,2020,48(4):153-156.
29
傅全乐,李齐方,丁筠,等.聚甲醛的耐磨改性研究[J].工程塑料应用,2014,42(7):34-37.
30
熊小双.亚麻纤维增强聚甲醛复合材料力学性能及摩擦磨损特性研究[D].武汉:武汉理工大学,2020.
31
雷小梅,罗发亮,司朋飞,等.PPC对POM熔融、结晶及力学性能的影响[J].塑料,2016,45(6):17-20.
32
王莹,王亚涛,桑晓明.重复加工对聚甲醛性能的影响[J].塑料科技,2015,43(10):63-67.
33
贾镜渤.共聚甲醛制备的工艺管理探究[J].煤炭与化工,2023,46(4):123-125, 130.
34
王亚涛.聚甲醛的改性、加工及应用研究[D].北京:北京化工大学,2018.
35
孙亚楠,方伟,张彩霞,等.复配抗氧剂对聚甲醛加工稳定性的影响[J].现代塑料加工应用,2019,31(6):30-32.
36
乃国星,孙亚楠,方伟,等.复配型甲醛吸收剂对聚甲醛游离甲醛含量的影响[J].合成材料老化与应用,2020,49(5):30-32.

评论

PDF(1339 KB)

Accesses

Citation

Detail

段落导航
相关文章

/