PLA/E-MA-GMA/PBS复合材料力学及生物分解性能研究

刘志刚, 颜祥禹, 陈波, 肖洋, 李俊文, 周魏华, 武丽达

PDF(1232 KB)
PDF(1232 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (04) : 99-103. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.020
生物与降解材料

PLA/E-MA-GMA/PBS复合材料力学及生物分解性能研究

作者信息 +

Study on Mechanical and Biodegradation Performance of PLA/E-MA-GMA/PBS Composites

Author information +
History +

摘要

文章通过共混改性的方法提升聚乳酸(PLA)的韧性,获得抗冲击的生物降解材料。在PLA中加入乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物(E-MA-GMA)和聚丁二酸丁二醇酯(PBS),通过共混熔融反应加工的方法,制备PLA/E-MA-GMA/PBS复合材料,研究了不同E-MA-GMA含量对复合材料的热学性能、流变性能、流动性能、力学性能、相形态、生物分解性能的影响。结果表明:当E-MA-GMA含量为5%~25%时,PLA/E-MA-GMA/PBS复合材料生物分解率均大于60%,符合GB/T 19277.1—2011中生物分解塑料要求。E-MA-GMA可以显著提升PLA/E-MA-GMA/PBS复合材料的韧性和冲击强度,同时进一步说明PLA/E-MA-GMA/PBS复合材料之间存在部分相容性。随着E-MA-GMA含量的增加,PLA/E-MA-GMA/PBS复合材料的复数黏度显著提高,各组分之间发生分子链缠结增强,E-MA-GMA、PLA和PBS之间发生明显的相互作用。

Abstract

The purpose of this paper is to improve the toughness of polylactic acid (PLA) through the method of blending modification to obtain impact resistant biodegradable materials. PLA/EMA-GMA/PBS composites were prepared by adding ethylene-methyl acrylate-glycidyl methacrylate copolymer (EMA-GMA) and polybutylene succinate (PBS) to PLA by the method of blending and melting reaction processing. The influences of different E­MA­GMA content on the thermal properties, rheological properties, flowability, mechanical properties, phase morphology, and biological decomposition properties were studied. The results show that when the E­MA­GMA content is 5%~25%, the biological decomposition rate of PLA/E­MA­GMA/PBS composites is larger than 60%, which meets the requirements of biodegradable plastics in GB/T 19277.1—2011. E-MA-GMA can significantly improve the toughness and impact strength of PLA/E­MA­GMA/PBS composites, and further shows that there is partial compatibility between PLA/E­MA­GMA/PBS composites. With the increase of E­MA­GMA content, the complex viscosity of the PLA/E­MA­GMA/PBS composites increases remarkedly, the molecular chain entanglement of different components. There is a significant interaction between E-MA-GMA, PLA, and PBS.

关键词

聚乳酸 / 乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯 / 聚丁二酸丁二醇酯 / 力学性能 / 生物分解性能

Key words

Polylactic acid / Ethylene-methyl acrylate-glycidyl methacrylate / Polybutylene succinate / Mechanical properties / Biodegradation performance

中图分类号

TB322

引用本文

导出引用
刘志刚 , 颜祥禹 , 陈波 , . PLA/E-MA-GMA/PBS复合材料力学及生物分解性能研究. 塑料科技. 2024, 52(04): 99-103 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.020
LIU Zhi-gang, YAN Xiang-yu, CHEN Bo, et al. Study on Mechanical and Biodegradation Performance of PLA/E-MA-GMA/PBS Composites[J]. Plastics Science and Technology. 2024, 52(04): 99-103 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.020

参考文献

1
FENG Y L, YIN J H, JIANG W, et al. Properties of poly(lactic acid) toughened by epoxy-functionalized elastomer[J]. Chemical Journal of Chinese Universities, 2012, 33(2): 400-403.
2
苏思玲,金乐群,顾永安,等.E-MA-GMA三嵌段共聚物对聚乳酸的增韧改性[J].高分子材料科学与工程,2008,24(4):53-57.
3
ZHU C B, LU X, LI Y, et al. Enhancing toughness of PLA/ZrP nanocomposite through reactive melt-mixing by ethylene-methyl acrylate-glycidyl methacrylate copolymer[J]. Polymers, 2022, DOI: 10.3390/polym14183748.
4
王晓婷,唐颂超,王钰霖.E-MA-GMA对PLA/LLDPE共混体系的增容性研究[J].塑料,2008,37(4):15-17.
5
WANG M M, LIANG X R, WU H, et al. Super toughed poly (lactic acid)/poly(ethylene vinyl acetate) blends compatibilized by ethylene-methyl acrylate-glycidyl methacrylate copolymer[J]. Polymer Degradation and Stability, 2021, DOI: 10.1016/j.polymdegradstab.2021.109705.
6
孙强英,黄莉茜,林宗华.聚乳酸/乙烯-乙酸乙烯共聚物的共混工艺及力学性能[J].东华大学学报:自然科学版,2009,35(4):376-380.
7
LIN W Y, QU J P. Enhancing impact toughness of renewable poly(lactic acid)/thermoplastic polyurethane blends via constructing cocontinuous-like phase morphology assisted by ethylene-methyl acrylate-glycidyl methacrylate copolymer[J]. Industrial & Engineering Chemistry Research, 2019, 58: 10894-10907.
8
DENG S H, BAI H W, LIU Z W, et al. Toward supertough and heat-resistant stereocomplex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending[J]. Macromolecules, 2019, 52: 1718-1730.
9
BAOUZ T, ACIK E, REZGUI F, et al. Effects of mixing protocols on impact modified poly(lactic acid) layered silicate nanocomposites[J]. Journal of Applied Polymer Science, 2015, DOI: 10.1002/app.41518.
10
周迎鑫.聚(3-羟基丁酸酯-3-羟基己酸酯)/聚乳酸共混物的增容研究[J].中国塑料,2017,31(8):56-61.
11
WU N J, ZHANG H. Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends[J]. Materials Letters, 2017, 192: 17-20.
12
XIAO X L, CHEVALI V S, SONG P A, et al. Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock[J]. Composites Science and Technology, 2019, DOI: 10.1016/j.compscitech.2019.107887.
13
JIANG G, LI H L, WANG F. Structure of PBAT/PPC blends prepared by in-situ reactive compatibilization and properties of their blowing films[J]. Materials Today Communications, 2021, DOI: 10.1016/j.mtcomm.2021.102215.
14
XUE B, HE H Z, HUANG Z X, et al. Morphology evolution of poly(lactic acid) during in situ reaction with poly(butylenesuccinate) and ethylene-methyl acrylate-glycidyl methacrylate: The formation of a novel 3D star-like structure[J]. Journal of Applied Polymer Science, 2020, DOI: 10.1002/app.49201.
15
XUE B, HE H Z, HUANG Z X, et al. Fabrication of super-tough ternary blends by melt compounding of poly(lactic acid) with poly(butylene succinate) and ethylene-methyl acrylate-glycidyl methacrylate[J]. Composites Part B-Engineering, 2019, 172: 743-749.
16
XUE B, HE H Z, ZHU Z W, et al. A facile fabrication of high toughness poly(lactic acid) via reactive extrusion with poly(butylene succinate) and ethylene-methyl acrylate-glycidyl methacrylate[J]. Polymers, 2018, DOI: 10.3390/polym10121401.
17
刘志刚,颜祥禹.E-MA-GMA增韧PLA共混物性能研究[J].塑料科技,2022,50(6):33-36.
18
JIA S L, CHEN Y J, YU Y L, et al. Effect of ethylene/butyl methacrylate/glycidyl methacrylate terpolymer on toughness and biodegradation of poly(L-lactic acid)[J]. International Journal of Biological Macromolecules, 2019, 127: 415-424.
19
ZHAO J L, PAN H W, YANG H L, et al. Study on miscibility, thermal properties, degradation behaviors, and toughening mechanism of poly(lactic acid)/poly(ethylene-butylacrylate-glycidyl methacrylate) blends[J]. International Journal of Biological Macromolecules, 2019, 143: 443-452.
20
LIU H Z, GUO L, GUO X J, et al. Effects of reactive blending temperature on impact toughness of poly(lactic acid) ternary blends[J]. Polymer, 2012, 53: 272-276.
21
LIU H Z, CHEN F, LIU B, et al. Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization[J]. Macromolecules, 2010, 43: 6058-6066.
22
LIU H Z, SONG W J, CHEN F, et al. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends[J]. Macromolecules, 2011, 44: 1513-1522.
23
KUMAR M, MOHANTY S, NAYAK S K, et al. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites[J]. Bioresource Technology, 2010, 101: 8406-8415.
24
SONG W J, LIU H H, CHEN F, et al. Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending[J]. Polymer, 2012, 53: 2476-2484.
25
ZHANG X, LI Y, HAN L J, et al. Improvement in toughness and crystallization of poly(L-lactic acid) by melt blending with ethylene/methyl acrylate/glycidyl methacrylate terpolymer[J]. Polymer Engineering and Science, 2013, 53: 2498-2508.
26
SU Z Z, LI Q Y, LIU Y J, et al. Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane)[J]. European Polymer Journal, 2009, 45: 2428-2433.

评论

PDF(1232 KB)

Accesses

Citation

Detail

段落导航
相关文章

/