氧化石墨烯/纤维素纳米晶协同增强环氧树脂研究

曹亚, 王业飞, 刘凡恺, 阚涛, 高祖轩

PDF(1642 KB)
PDF(1642 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (04) : 80-84. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.016
加工与应用

氧化石墨烯/纤维素纳米晶协同增强环氧树脂研究

作者信息 +

Study on Synergistic Reinforcement of Epoxy Resin with Graphene Oxide/Cellulose Nanocrystals

Author information +
History +

摘要

利用纤维素纳米晶(CNC)修饰氧化石墨烯(GO)制备了纳米填料GC,并制备了环氧树脂(EP)/GC复合纳米材料,研究了GC对EP纳米复合材料的力学性能、动态机械性能和介电性能的影响。结果表明:相比单一纳米填料GO或CNC,复合填料GC能够更有效地提高EP复合材料的力学性能及黏弹性。EP/GC的介电常数提升效果最显著,介电损耗相对更低,接近纯EP的水平。添加GC后,EP/GC的电阻率从纯EP的8.23×1010 Ω·cm降至7.66×108 Ω·cm。在0~50 kV的直流电场下,相比纯EP,EP/GC的击穿电压从29.45 kV升至36.57 kV,提升了24.2%。

Abstract

Nano filler GC was prepared by modifying graphene oxide (GO) with cellulose nanocrystals (CNC), and epoxy resin (EP)/GC composites were prepared. The effects of GC on the mechanical properties, dynamic mechanical properties, and dielectric properties of EP nanocomposites were studied. The results show that compared with single nano filler GO or CNC, the composite filler GC can improve the mechanical properties and viscoelasticity of EP composites more effectively. EP/GC has the most significant dielectric constant improvement effect, and the dielectric loss is relatively lower, close to the level of pure EP. With the addition of GC, the resistivity of EP/GC decreases from 8.23×1010 Ω·cm of pure EP to 7.66×108 Ω·cm. In the direct current field of 0~50 kV, compared with pure EP, the breakdown voltage of EP/GC is increased from 29.45 kV to 36.57 kV, with an increase of 24.2%.

关键词

纤维素纳米晶 / 氧化石墨烯 / 环氧树脂 / 力学性能 / 介电性能

Key words

Cellulose nanocrystals / Oxidized graphene / Epoxy resin / Mechanical properties / Dielectric performance

中图分类号

TB332 / TQ323.5

引用本文

导出引用
曹亚 , 王业飞 , 刘凡恺 , . 氧化石墨烯/纤维素纳米晶协同增强环氧树脂研究. 塑料科技. 2024, 52(04): 80-84 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.016
CAO Ya, WANG Ye-fei, LIU Fan-kai, et al. Study on Synergistic Reinforcement of Epoxy Resin with Graphene Oxide/Cellulose Nanocrystals[J]. Plastics Science and Technology. 2024, 52(04): 80-84 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.016

参考文献

1
ZHAN P, XU J, WANG J, et al. A review of recycled aggregate concrete modified by nanosilica and graphene oxide: Materials, performances and mechanism[J]. Journal of Cleaner Production, 2022, 375, 134116.
2
ZHONG L, HAO Y, ZHANG J, et al. Closed-loop recyclable fully bio-based epoxy vitrimers from ferulic acid-derived hyperbranched epoxy resin[J]. Macromolecules, 2022, 55(2): 595-607.
3
RASHID M A, ZHU S, JIANG Q, et al. A quercetin-derived polybasic acid hardener for reprocessable and degradable epoxy resins based on transesterification[J]. ACS Applied Polymer Materials, 2022, 4(8): 5708-5716.
4
XIA L, WANG X, REN T, et al. Green construction of multi-functional fire resistant epoxy resins based on boron nitride with core-shell structure[J]. Polymer Degradation and Stability, 2022, DOI: 10.1016/j.polymdegradstab.2022.110059.
5
LI M, MIN Z, WANG Q, et al. Effect of epoxy resin content and conversion rate on the compatibility and component distribution of epoxy asphalt: A MD simulation study[J]. Construction and Building Materials. 2022, DOI: 10.1016/j.conbuildmat.2021.126050.
6
HUO S, SAI T, RAN S, et al. A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins[J]. Composites Part B: Engineering, 2022, DOI: 10.1016/j.compositesb.2022.109701.
7
SREEHARI H, GOPIKA V, JAYAN J S, et al. A comprehensive review on bio epoxy based IPN: Synthesis, properties and applications[J]. Polymer, 2022, DOI: 10.1016/j.polymer.2022.124950.
8
SUO Y, GUO R, XIA H, et al. A review of graphene oxide/cement composites: Performance, functionality, mechanisms, and prospects[J]. Journal of Building Engineering, 2022, DOI: 10.1016/j.jobe.2022.104502.
9
GUO S, GARAJ S, BIANCO A, et al. Controlling covalent chemistry on graphene oxide[J]. Nature Reviews Physics, 2022, 4(4): 247-262.
10
AJALA O J, TIJANI J O, BANKOLE M T, et al. A critical review on graphene oxide nanostructured material: Properties, synthesis, characterization and application in water and wastewater treatment[J]. Environmental Nanotechnology, Monitoring & Management, 2022, DOI: 10.1016/j.enmm.2022.100673.
11
RAZAQ A, BIBI F, ZHENG X, et al. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications[J]. Materials, 2022, DOI: 10.3390/ma15031012.
12
谢志辉,张跃,梁智明,等.二氧化硅/氧化石墨烯杂化改性对环氧树脂固化动力学的影响[J].塑料工业,2022,50(12):46-51.
13
GUTIÉRREZ-CRUZ A, RUIZ-HERNÁNDEZ A R, VEGA-CLEMENTE J F, et al. A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide[J]. Journal of Materials Science, 2022, 57 (31): 14543-14578.
14
J J, ZHANG G Q, ZHANG H M, et al. Graphene oxide-cellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved antifouling performance in MBR: Behavior and mechanism[J]. Chemical Engineering Journal, 2018, 352, 15: 765-773.
15
ZHAO Q, LU Z, WU Y, et al. Designing strong interfacial adhesion between carbon fiber and epoxy resin via dopamine towards excellent protection ability under high hydrostatic pressure and severe erosion corrosion condition[J]. Composites Science and Technology, 2022, DOI: 10.1016/j.compscitech.2021.109090.
16
MÜLLER-PABEL M, RODRÍGUEZ AGUDO J A, GUDE M. Measuring and understanding cure-dependent viscoelastic properties of epoxy resin: A review[J]. Polymer Testing, 2022, DOI: 10.1016/j.polymertesting.2022.107701.
17
MOUSAVI S R, ESTAJI S, KIAEI H, et al. A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles[J]. Polymer Testing, 2022, DOI: 10.1016/j.polymertesting.2022.107645.
18
陈虹雨,杨建军,陈春俊,等.氧化石墨烯包裹聚甲基丙烯酸缩水甘油酯微球用于增强水性环氧树脂的防腐性能[J].高分子材料科学与工程,2023,39(5):41-49.
19
GONCALVES F A M M, SANTOS M, CERNADAS T, et al. Influence of fillers on epoxy resins properties: A review[J]. Journal of Materials Science, 2022, 57(32): 15183-15212.
20
王壹,田林波,叶晓兰,等.短链有机硅环氧的制备及其对双酚A型环氧树脂的增韧改性研究[J].塑料科技,2022,50(2):14-18.
21
韩苇召,张锋锋,王锦艳,等.含碳硼烷耐高温环氧树脂的合成与性能[J].高分子材料科学与工程,2021,37(11):22-28.
22
徐志财,侯燕,刘志林,等.超支化环氧树脂改性氰酸酯树脂及其性能[J].高分子材料科学与工程,2022,38(4):144-151.
23
高利达,李祥,张效重,等.六方氮化硼-立方氮化硼/环氧树脂复合材料的制备与热物性能[J].复合材料学报,2022,39(6):2599-2606.
24
王升文.苯丙复合水性防腐涂料的制备与性能研究[J].塑料工业,2021,49(2):46-48, 127.
25
宁晓秋,王立地,王宇,等.微米Al2O3/环氧树脂复合材料介电性能和热性能研究[J].绝缘材料,2020,53(10):32-37.
26
孙文杰,张磊,李天宇,等.基于动态受阻脲键氢化环氧树脂的介电性能与可修复性能[J].高电压技术,2022,48(7):2668-2676.
27
刘升华.环氧树脂基导热复合材料的制备与性能研究[J].化学工程,2022,50(7):22-26.
28
WANG H, LU R, YAN J, et al. Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites[J]. Angewandte Chemie International Edition, 2023, DOI: 10.1002/anie.202216874.

评论

PDF(1642 KB)

Accesses

Citation

Detail

段落导航
相关文章

/