
不同注射温度和热处理对聚醚醚酮/碳纤维复合材料摩擦磨损性能的影响
施水娟, 卞达, 李佳红, 王恺璇, 徐鹏程, 赵鹏, 赵永武, 陈义
不同注射温度和热处理对聚醚醚酮/碳纤维复合材料摩擦磨损性能的影响
Effects of Different Injection Temperatures and Heat Treatments on Friction and Wear Properties of PEEK/CF Composites
为了对聚醚醚酮(PEEK)的成型工艺进行优化,从而提高材料的耐磨损性能,并拓展其工业应用。以碳纤维(CF)为增强相,在不同注射温度条件下,制备了不同热处理工艺下的PEEK/CF复合材料。利用摩擦磨损试验机对复合材料的摩擦学性能进行测试,并利用X-射线衍射仪、白光干涉仪和扫描电子显微镜对材料进行表面分析和性能测试。结果表明:注射温度和热处理工艺对PEEK/CF复合材料的物相没有影响。随着注射温度的增加,样品表面的摩擦系数和磨损呈现出先减小后增大的趋势,而回火后样品的摩擦系数和磨损率更小。注射温度为175 ℃且回火后的材料,其摩擦系数最低,为0.091 4,磨损率最小,为0.106×10-6 mm3/(N·m)。研究表明,合适的注射温度和热处理可以提高PEEK/CF复合材料的减磨耐磨性能。
In order to optimize the molding process of polyetheretherketone(PEEK) and improve the wear resistance of the material and expand the range of applications, carbon fiber (CF) is used as reinforcing phase and PEEK/CF composites under different heat treatment processes were prepared at different injection temperature conditions. Tribologic properties of composites are tested by tribo-wear testing machines, and surface analysis and performance tests are performed using a X-ray diffraction, a white light interferometer, and a scanning electron microscope. The results show that the injection temperature and heat treatment process have no effect on the phase of PEEK/CF composites. With the increase of injection temperature, the friction coefficient and wear of the sample surface show a trend of decreasing first and then increasing, while the friction coefficient and wear rate of the sample after tempering are smaller. When the injection temperature is 175 ℃, the friction coefficient of the tempered material is the lowest, which is 0.091 4, and the wear rate is the lowest, which is 0.106×10-6 mm3/(N·m). The research indicates that appropriate injection temperature and heat treatment can improve the wear reduction and wear resistance of PEEK/CF composites.
Polyetheretherketone / Carbon fiber / Friction coefficient / Minimum wear rate
TB332
1 |
逄显娟,岳世伟,黄素玲,等.碳纤维/聚醚醚酮(CF/PEEK)复合材料摩擦磨损性能及抗摩擦静电特性研究[J].中国机械工程,2023,34(3):277-286.
|
2 |
|
3 |
|
4 |
朱艳吉,陈晶,姜丽丽,等.组装改性碳纤维增强聚醚醚酮复合材料的摩擦学性能[J].润滑与密封,2015,40(8):61-65.
|
5 |
|
6 |
|
7 |
|
8 |
方良超,陈奇海,霍绍新,等.聚醚醚酮(PEEK)的改性及其应用[J].合成材料老化与应用,2019,48(2):115-118.
|
9 |
姚光督,王文东,沈景凤,等.PTFE微粉/CF改性PEEK复合材料的摩擦磨损性能[J].材料科学与工艺,2018,26(3):59-65.
|
10 |
汪怀远,杨淑慧,张帅,等.聚醚醚酮基复合材料端面摩擦热的有限元数值模拟[J].高分子材料科学与工程,2013,29(3):182-185, 190.
|
11 |
刘俊聪,刘爱云,李树虎,等.聚醚醚酮复合材料改性研究进展[J].工程塑料应用,2022,50(2):169-174.
|
12 |
|
13 |
冯乐,邱鹏,刘敏,等.壳聚糖改性聚醚醚酮表征及对MC3T3-E1 细胞黏附、增殖的影响[J].中国组织工程研究,2022(21):3351-3356.
|
14 |
王楠,张家强,蔺鹏婷,等.聚醚醚酮材料表面磺化改性及表面金属化[J].宇航材料工艺,2021(5):94-98.
|
15 |
李卫杰,张伟,李元成,等.激光处理对3D打印聚醚酰亚胺、聚醚醚酮和聚醚醚酮/碳纤维制件胶接性能的影响[J].高分子材料科学与工程,2021(12):75-82.
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
徐培琦,徐静,宁洋,等.玻纤含量对聚醚醚酮/玻纤复合材料性能的影响[J].塑料科技,2018(6):73-77.
|
23 |
|
24 |
魏天月.纳米氧化铝增强聚醚醚酮复合材料的制备、性能及生物相容性研究[D].武汉:武汉理工大学,2020.
|
25 |
瞿明城,张礼颖,周剑锋,等.碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能[J].复合材料学报,2022(7):3251-3261.
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
赵仕浩,张鹏,杨玉婧.模压工艺参数对PEEK基复合材料冲击性能及摩擦学性能的影响[J].橡塑技术与装备,2022,48(7):24-27.
|
33 |
岳世伟,逄显娟,牛一旭,等.载荷和速度对聚醚醚酮(PEEK)复合材料摩擦性能的影响[J].材料导报,2022,36(16):255-261.
|
34 |
刘煦.碳纤维/PEEK及PTFE/POM复合材料的力学性质研究[D].成都:西南交通大学,2012.
|
35 |
王骏,陈义,李迎吉,等.注射温度对碳纤维增强聚醚醚酮的力学及摩擦磨损性能影响探究[J].塑料科技,2022,50(7):49-52.
|
36 |
王齐华,吕美,王廷梅.聚合物材料的空间摩擦学[M].北京:科学出版社,2019.
|
/
〈 |
|
〉 |