聚乳酸/rGO/HTPDMS纳米纤维膜制备及其性能研究

秦杰, 耿鑫, 靳开朗, 邓曼娜, 王浩, 张晓丽, 焦晨璐, 韩晓建

PDF(1901 KB)
PDF(1901 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (04) : 19-22. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.004
理论与研究

聚乳酸/rGO/HTPDMS纳米纤维膜制备及其性能研究

作者信息 +

Preparation and Properties of PLA/rGO/HTPDMS Nanofiber Membranes

Author information +
History +

摘要

为了减小废弃油水对环境的危害,将聚乳酸-还原氧化石墨烯(PLA/rGO)与羟基封端聚二甲基硅氧烷(HTPDMS)以不同比例共混,通过静电纺丝技术制备了一系列PLA/rGO/HTPDMS复合纤维膜,结合扫描电子显微镜、红外光谱仪和接触角仪等对纤维膜的微观形貌、表面成分和疏水性进行表征。结果表明:PLA/rGO与HTPDMS共混后,所制得的纤维膜均以纳米尺度纤维构成,且膜中存在HTPDMS成分。HTPDMS的加入使PLA/rGO膜疏水性得到大幅提升。油-水混合物的分离具有较高油通量,通量均高于18 400 L/(m2·h),分离效率大于98.2%。经过10次循环分离后纤维膜分离效率仍可达到97%以上,具有良好循环稳定性。PLA/rGO/HTPDMS纤维膜在含油废水处理方面具有广阔的应用前景。

Abstract

In order to reduce the environmental hazard of waste oil water, the composite nanofibrous membranes were fabricated by electrospinning technique. The membranes were prepared by blending poly(lactic acid)/reduced graphene oxide (PLA/rGO) and hydroxyl-capped polydimethylsiloxane (HTPDMS) in varying ratios. The nanofibrous membranes were subjected to characterization by a scanning electron microscopy, an infrared spectroscopy, and a contact angle instrument to assess their micro-morphology, surface composition, and hydrophobicity. The results show that the addition of HTPDMS into PLA/rGO results in the formation of membranes consisting of nano-scaled fibres with HTPDMS. The hydrophobicity of PLA/rGO membrane is greatly improved by the addition of HTPDMS. The separation of oil-water mixtures has high oil fluxes, the fluxes are higher than 18 400 L/(m2·h), and the separation efficiency is greater than 98.2%. After 10 cycles of separation, the separation efficiency of fiber membrane can still reach more than 97%, with good cycle stability. PLA/rGO/HTPDMS fiber membrane has a broad application prospect in oily wastewater treatment.

关键词

聚乳酸 / 还原氧化石墨烯 / 羟基封端聚二甲基硅氧烷 / 静电纺丝

Key words

Poly(lactic acid) / Reduced graphene oxide / Hydroxy-terminated polydimethylsiloxane / Electrospinning

中图分类号

TQ340.64

引用本文

导出引用
秦杰 , 耿鑫 , 靳开朗 , . 聚乳酸/rGO/HTPDMS纳米纤维膜制备及其性能研究. 塑料科技. 2024, 52(04): 19-22 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.004
QIN Jie, GENG Xin, JIN Kai-lang, et al. Preparation and Properties of PLA/rGO/HTPDMS Nanofiber Membranes[J]. Plastics Science and Technology. 2024, 52(04): 19-22 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.004

参考文献

1
李杰,闫祖喻,张锁,等.静电纺丝纳米纤维在膜分离领域中的应用研究进展[J].当代化工,2023,52(9):2218-2228.
2
黄春艳,李仁焕,梁家能,等.偶联改性棉花纳米纤维素/聚乳酸复合材料的非等温结晶性能和疏水性能研究[J].塑料科技,2020,48(6):85-91.
3
吴兰.全膜法水处理技术在环境保护中的实践分析[J].智能城市,2023,9(4):107-109.
4
李娜娜,郭丹,张富勇,等.纺织品加工过程中含油废水处理的研究进展[J].纺织科学与工程学报,2022,39(2):90-94.
5
LI L, XU Z Z, SUN W, et al. Bio-inspired membrane with adaptable wettability for smart oil/water separation)[J]. Journal of Membrane Science, 2020, DOI: 10.1016/j.memsci.2019.117661.
6
刘燕妮,朱松磊,张荣丽.聚乳酸/氧化石墨烯复合膜的制备及生物相容性研究[J].塑料科技,2021,49(6):42-46.
7
吴卫逢,丁玉梅,李好义,等.熔体静电纺丝制备聚乳酸纤维的吸油性能研究[J].北京化工大学学报:自然科学版,2014,41(4):71-75.
8
孟鑫,谈书航,曹齐茗,等.基于静电纺的超疏水超亲油串珠结构聚乳酸薄膜的制备及性能研究[J].中国塑料,2019,33(4):48-53.
9
阳思思,吴红枚,刘玉媛,等.聚乳酸/纳米纤维素复合材料的制备与性能研究进展[J].塑料科技,2022,50(7):124-128.
10
王一达,王艳.聚二甲基硅氧烷材料在有机溶剂纳滤膜的研究进展[J].膜科学与技术,2023,43(4):159-171.
11
吕丹丹,李慕荣,张伟钢.超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报,2023,37(4):231-236.
12
SHEN B S, DU C X, WANG W, et al. Antifouling hydrophilic electrostatic spinning PAN membrane based on click chemistry with high efficiency oil-water separation[J]. Fibers and Polymers, 2022, 23: 3386-3397.
13
李常胜,李从举,付中玉,等.静电纺PLA微/纳米纤维膜的浸润性能研究[J].合成纤维工业,2007,30(4):5-7.
14
杜国勇,段艺,袁巧,等.静电纺丝法制备PLA/rGO纳米纤维膜及其在油水分离中的应用[J].功能材料,2022,53(3):3162-3166.
15
赵亚梅,曹婷婷,张鹏远,等.氧化石墨烯-形状记忆环氧树脂/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@SiO2超疏水涂层的光热自修复与耐蚀性[J].复合材料学报,2023,40(6):3405-3416.
16
ROMERO-IBARRA I C, BONILLA-BLANCAS E, SÁNCHEZ-SOLÍS A, et al. Influence of the morphology ofbarium sulfate nanofibers and nanospheres on the physical properties of polyurethane nanocomposites[J]. European Polymer Journal, 2012, 48(4): 670-676.
17
ZHAI S R, ZHAI B, AN Q D. Effect of preparation conditions on structural properties of PMHS-TEOS hybrid materials[J]. Journal of Sol-Gel Science and Technology, 2011, 59: 480-487.
18
ANDERSON K S, SCHRECK K M, HILLMYER M A. Toughening polylactide[J]. Polymer Reviews, 2008, 48(1): 85-108.
19
黄耀丽,陆诚,蒋金华,等.聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报,2022,43(6):22-28.
20
许婧,项舟洋,王强,等.CNCs增强相分离法构建PVDF/PDMS超疏水表面[J].精细化工,2023,40(12):2666-2675, 2688.
21
HAZER B, BAYSAL B M, KÖSEOĞLU A G, et al. Synthesis of polylactide-b-poly(dimethyl siloxane) block copolymers and their blends with pure polylactide[J]. Journal of Polymers and the Environment, 2012, 20: 477-484.
22
陈涛,杨胜都,李亮亮,等.聚乳酸/二氧化硅超疏水材料的制备及其性能研究[J].高分子通报,2020(7):53-59.
23
中国科学院宁波材料技术与工程研究所.一种基于立构复合晶构建聚乳酸膜超疏水界面的制备方法:CN201610149918.1[P].2016-06-08.
24
云雪艳,张茹茹,王洋样,等.超疏水聚乳酸薄膜表面结构的调控及对酸奶的黏附作用[J].高分子材料科学与工程,2022,38(12):100-109.
25
王凡非,冯启明,王维清,等.磁性膨胀石墨的制备及对油的吸附分离与再生[J].功能材料,2013,44(12):1782-1786.

基金

安徽省教育厅高校自然科学研究项目(KJ2021A0130)
安徽省高等学校省级质量工程项目(2022jyxm)

评论

PDF(1901 KB)

Accesses

Citation

Detail

段落导航
相关文章

/