
聚乳酸/rGO/HTPDMS纳米纤维膜制备及其性能研究
秦杰, 耿鑫, 靳开朗, 邓曼娜, 王浩, 张晓丽, 焦晨璐, 韩晓建
聚乳酸/rGO/HTPDMS纳米纤维膜制备及其性能研究
Preparation and Properties of PLA/rGO/HTPDMS Nanofiber Membranes
为了减小废弃油水对环境的危害,将聚乳酸-还原氧化石墨烯(PLA/rGO)与羟基封端聚二甲基硅氧烷(HTPDMS)以不同比例共混,通过静电纺丝技术制备了一系列PLA/rGO/HTPDMS复合纤维膜,结合扫描电子显微镜、红外光谱仪和接触角仪等对纤维膜的微观形貌、表面成分和疏水性进行表征。结果表明:PLA/rGO与HTPDMS共混后,所制得的纤维膜均以纳米尺度纤维构成,且膜中存在HTPDMS成分。HTPDMS的加入使PLA/rGO膜疏水性得到大幅提升。油-水混合物的分离具有较高油通量,通量均高于18 400 L/(m2·h),分离效率大于98.2%。经过10次循环分离后纤维膜分离效率仍可达到97%以上,具有良好循环稳定性。PLA/rGO/HTPDMS纤维膜在含油废水处理方面具有广阔的应用前景。
In order to reduce the environmental hazard of waste oil water, the composite nanofibrous membranes were fabricated by electrospinning technique. The membranes were prepared by blending poly(lactic acid)/reduced graphene oxide (PLA/rGO) and hydroxyl-capped polydimethylsiloxane (HTPDMS) in varying ratios. The nanofibrous membranes were subjected to characterization by a scanning electron microscopy, an infrared spectroscopy, and a contact angle instrument to assess their micro-morphology, surface composition, and hydrophobicity. The results show that the addition of HTPDMS into PLA/rGO results in the formation of membranes consisting of nano-scaled fibres with HTPDMS. The hydrophobicity of PLA/rGO membrane is greatly improved by the addition of HTPDMS. The separation of oil-water mixtures has high oil fluxes, the fluxes are higher than 18 400 L/(m2·h), and the separation efficiency is greater than 98.2%. After 10 cycles of separation, the separation efficiency of fiber membrane can still reach more than 97%, with good cycle stability. PLA/rGO/HTPDMS fiber membrane has a broad application prospect in oily wastewater treatment.
聚乳酸 / 还原氧化石墨烯 / 羟基封端聚二甲基硅氧烷 / 静电纺丝
Poly(lactic acid) / Reduced graphene oxide / Hydroxy-terminated polydimethylsiloxane / Electrospinning
TQ340.64
1 |
李杰,闫祖喻,张锁,等.静电纺丝纳米纤维在膜分离领域中的应用研究进展[J].当代化工,2023,52(9):2218-2228.
|
2 |
黄春艳,李仁焕,梁家能,等.偶联改性棉花纳米纤维素/聚乳酸复合材料的非等温结晶性能和疏水性能研究[J].塑料科技,2020,48(6):85-91.
|
3 |
吴兰.全膜法水处理技术在环境保护中的实践分析[J].智能城市,2023,9(4):107-109.
|
4 |
李娜娜,郭丹,张富勇,等.纺织品加工过程中含油废水处理的研究进展[J].纺织科学与工程学报,2022,39(2):90-94.
|
5 |
|
6 |
刘燕妮,朱松磊,张荣丽.聚乳酸/氧化石墨烯复合膜的制备及生物相容性研究[J].塑料科技,2021,49(6):42-46.
|
7 |
吴卫逢,丁玉梅,李好义,等.熔体静电纺丝制备聚乳酸纤维的吸油性能研究[J].北京化工大学学报:自然科学版,2014,41(4):71-75.
|
8 |
孟鑫,谈书航,曹齐茗,等.基于静电纺的超疏水超亲油串珠结构聚乳酸薄膜的制备及性能研究[J].中国塑料,2019,33(4):48-53.
|
9 |
阳思思,吴红枚,刘玉媛,等.聚乳酸/纳米纤维素复合材料的制备与性能研究进展[J].塑料科技,2022,50(7):124-128.
|
10 |
王一达,王艳.聚二甲基硅氧烷材料在有机溶剂纳滤膜的研究进展[J].膜科学与技术,2023,43(4):159-171.
|
11 |
吕丹丹,李慕荣,张伟钢.超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报,2023,37(4):231-236.
|
12 |
|
13 |
李常胜,李从举,付中玉,等.静电纺PLA微/纳米纤维膜的浸润性能研究[J].合成纤维工业,2007,30(4):5-7.
|
14 |
杜国勇,段艺,袁巧,等.静电纺丝法制备PLA/rGO纳米纤维膜及其在油水分离中的应用[J].功能材料,2022,53(3):3162-3166.
|
15 |
赵亚梅,曹婷婷,张鹏远,等.氧化石墨烯-形状记忆环氧树脂/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@SiO2超疏水涂层的光热自修复与耐蚀性[J].复合材料学报,2023,40(6):3405-3416.
|
16 |
|
17 |
|
18 |
|
19 |
黄耀丽,陆诚,蒋金华,等.聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报,2022,43(6):22-28.
|
20 |
许婧,项舟洋,王强,等.CNCs增强相分离法构建PVDF/PDMS超疏水表面[J].精细化工,2023,40(12):2666-2675, 2688.
|
21 |
|
22 |
陈涛,杨胜都,李亮亮,等.聚乳酸/二氧化硅超疏水材料的制备及其性能研究[J].高分子通报,2020(7):53-59.
|
23 |
中国科学院宁波材料技术与工程研究所.一种基于立构复合晶构建聚乳酸膜超疏水界面的制备方法:CN201610149918.1[P].2016-06-08.
|
24 |
云雪艳,张茹茹,王洋样,等.超疏水聚乳酸薄膜表面结构的调控及对酸奶的黏附作用[J].高分子材料科学与工程,2022,38(12):100-109.
|
25 |
王凡非,冯启明,王维清,等.磁性膨胀石墨的制备及对油的吸附分离与再生[J].功能材料,2013,44(12):1782-1786.
|
/
〈 |
|
〉 |