石墨烯增强碳纤维复合材料层合板制备技术及其性能研究

杨铮鑫, 李光宣, 党鹏飞, 王凯, 朱健

PDF(1751 KB)
PDF(1751 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (04) : 14-18. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.003
理论与研究

石墨烯增强碳纤维复合材料层合板制备技术及其性能研究

作者信息 +

Preparation and Properties of Graphene Reinforced Carbon Fiber Composite Laminates

Author information +
History +

摘要

采用真空辅助树脂传递模塑成型工艺制备石墨烯/碳纤维复合材料层合板,研究不同质量分数的不同结构形式的石墨烯对碳纤维复合材料层合板拉伸性能的影响。首先,通过超声分散将单层石墨烯和多层石墨烯分别均匀分散到环氧树脂中。然后,采用真空辅助树脂传递模塑成型工艺分别制备单层和多层石墨烯/碳纤维复合材料层合板。最后,使用拉伸试验机测试复合材料层合板的抗拉性能。结果表明:单层石墨烯的质量分数为0.03%~0.10%时,随着单层石墨烯质量分数的增加试件的抗拉性能逐渐提高。多层石墨烯的质量分数为0.03%~0.10%时,随着多层石墨烯质量分数的增加试件的抗拉性能逐渐降低。

Abstract

Graphene/carbon fiber composite laminates were prepared by vacuum assisted resin transfer molding process. The effects of different structural forms of graphene with different mass fractions on the tensile properties of carbon fiber composite laminates were investigated. First, the graphene monolayer and multilayer graphene were distributed evenly into epoxy resin by ultrasonic dispersion. Then, single-layer and multilayer graphene/carbon fiber composite laminates were prepared by vacuum assisted resin transfer molding process. Finally, tensile testing machine was used to test the tensile properties of composite laminates. The results show that when the mass fraction of graphene is 0.03%~0.10%, the tensile properties of the specimens are gradually improved with the increase of the mass fraction of graphene. When the mass fraction of multilayer graphene is 0.03%~0.10%, the tensile properties of the specimens gradually decrease with the increase of the mass fraction of multilayer graphene.

关键词

单层石墨烯 / 多层石墨烯 / 碳纤维复合材料 / 拉伸性能

Key words

Monolayer graphene / Multilayer graphene / Carbon fiber composites / Tensile property

中图分类号

TB332

引用本文

导出引用
杨铮鑫 , 李光宣 , 党鹏飞 , . 石墨烯增强碳纤维复合材料层合板制备技术及其性能研究. 塑料科技. 2024, 52(04): 14-18 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.003
YANG Zheng-xin, LI Guang-xuan, DANG Peng-fei, et al. Preparation and Properties of Graphene Reinforced Carbon Fiber Composite Laminates[J]. Plastics Science and Technology. 2024, 52(04): 14-18 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.003

参考文献

1
程健强,王文广,韩杰.碳纤维增强水泥基复合材料的力学性能研究进展[J].辽宁石油化工大学学报,2021,41(3):34-42.
2
张加波,张开虎,范洪涛,等.纤维复合材料激光加工进展及航天应用展望[J].航空学报,2022,43(4):132-153.
3
黎盛寓.环氧树脂/碳纤维复合材料在汽车悬架结构中的强化设计应用[J].塑料科技,2020,48(9):81-85.
4
张海燕,李根臣,刘震宇,等.国产T700级碳纤维及复合材料性能表征[J].化工新型材料,2020,48(4):238-240.
5
冯俊.碳纤维的改性及其界面性能[J].合成树脂及塑料,2019,36(6):27-30, 35.
6
JAYAN J S, SARITHA A, JOSEPH K. Innovative materials of this era for toughening the epoxy matrix: A review[J]. Polymer Composites, 2018, 39(Suppl 4): 1959-1986.
7
SHRIVASTAVA R, SINGH K K. Interlaminar fracturetoughness character ization of laminated composites: A review[J]. Polymer Reviews, 2020, 60(3): 542-593.
8
王函.基于石墨烯形态调控的复合材料界面设计及性能研究[D].合肥:中国科学技术大学,2021.
9
李琴.废旧再生碳纤维增强环氧树脂复合材料力学性能及界面性能研究[J].塑料科技,2022,50(2):19-22.
10
宋绪丁,庞利沙.碳纤维树脂基复合材料及成型工艺与应用研究进展[J].包装工程,2021,42(14):81-91.
11
王迎芬,刘刚,彭公秋,等.国产T700级碳纤维/双马来酰亚胺树脂复合材料界面性能[J].材料工程,2018,46(4):140-145.
12
JIANG Y, ZHU P W, XU L W, et al. Bending anchoring reinforcement of zinc nanosheets for carbon fiber composites[J]. Advanced Engineering Materials, 2021, DOI: 10.1002/adem.202100818.
13
毕一凡,程宝发,朱祥东.聚酰胺6/氧化石墨烯改性碳纤维复合材料机械性能与导热性能研究[J].复合材料科学与工程,2023(3):34-38, 82.
14
韩乔乔,周智勇,陈磊.石墨烯增强碳纤维环氧复合材料界面性能研究[J].针织工业,2019(1):22-24.
15
郭妙才,黑艳伟,李斌太,等.石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J].复合材料学报,2022,39(9):4354-4365.
16
姚佳伟.PEK-C/碳纳米管层间增韧碳纤维环氧树脂复合材料研究[D].北京:北京科技大学,2023.
17
秦建杰.碳纤维表面连续生长碳纳米管及其增强复合材料的研究[D].济南:山东大学,2021.
18
姚志强.碳纤维表面低温生长碳纳米管及其增强复合材料界面性能的研究[D].济南:山东大学,2022.
19
李荔枝.碳纳米管/碳纤维跨尺度增强环氧基复合材料界面性能研究[D].哈尔滨:哈尔滨工业大学,2021.
20
GUO Y, ZHANG L L, SONG Q, et al.Simultaneously enhancing mechanical and tribological properties of carbon fiber composites by grafting SiC hexagonal nanopyramids for brake disk application[J].Journal of Materials Science Technology, 2022, 121: 1-8.
21
MARASHIZADEH P, ABSHIRINI M, SAHA M, et al. Interfacial properties of ZnO nanowire-enhanced carbon fiber composites: A molecular dynamics simulation study[J]. Langmuir: the ACS journal of surfaces and colloids,2021, 37(23): 7138-7146.
22
YAN M L, JIAO W C, LI J, et al. Enhancement of the cryogenic‐interfacial‐strength of carbon fiber composites by chemical grafting of graphene oxide/attapulgite on T300[J]. Polymer Composites, 2020, 41(12): 5072-5081.
23
TAREQ M S, JONY B, ZAINUDDIN S, et al. Fatigue analysis and fracture toughness of graphene reinforced carbon fibre polymer composites[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 44(2): 461-474.
24
ALTIN Y, YILMAZ H, UNSAL O F, et al. Graphene oxide modified carbon fiber reinforced epoxy composites[J] Journal of Polymer Engineering, 2020, 40(5): 415-420.
25
WANG J Y, CHEN L F, SHEN W, et al. Research on tensile properties of carbon fiber composite laminates[J].Polymers, 2022, DOI: 10.3390/polym14122318.
26
CHU C X, GE H Y, GU N L, et al. Interfacial microstructure and mechanical properties of carbon fiber composite modified with carbon dots[J]. Composites Science and Technology, 2019,
27
TSAI S N, CAROLAN D, SPRENGER S, et al. Fracture and fatigue behaviour of carbon fibre composites with nanoparticle-sized fibres[J]. Composite Structures, 2019, 217: 143-149.
28
RANDALL J D, EYCKENS D J, SERVINIS L, et al. Designing carbon fiber composite interfaces using a 'graft-to' approach: Surface grafting density versus interphase penetration[J]. Carbon, 2019, 146: 88-96.
29
OU Q R, JI P J, XIAO J, et al. A study on the properties of resin transfer molding cyanate ester and its T800 grade carbon fiber composites[J]. Fluid Dynamics & Materials Processing, 2019, 15(1): 27-37.
30
AMERICAN SOCIETY for TESTING and MATERIALS. Standard test method for tensile properties of polymer matrix composite materials:ASTM D3039/D3039M-08[S]. West Conshohocken: ASTM, 2008.

基金

国家自然科学基金(12002219)
辽宁省科技厅自然科学基金计划项目(2022-NLTS-18-02)
辽宁省科学技术计划项目(2022JH2/101300077)
辽宁省科学技术计划项目(2023JH2/101600062)
横向项目(2022210101003328)

评论

PDF(1751 KB)

Accesses

Citation

Detail

段落导航
相关文章

/